
1

Supporting Information:
The Role of Optical Projection in the Analysis of Membrane Fluctuations

S. Alex Rautu1, Davide Orsi2, Lorenzo Di Michele3, George Rowlands1, Pietro Cicuta3,∗, Matthew S.

Turner1,†

1 Department of Physics, University of Warwick, Coventry, CV4 7AL, United Kingdom
2 Department of Mathematics, Physics and Computer Sciences, University of Parma, Italy
3 Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, United Kingdom
∗ pc245@cam.ac.uk † m.s.turner@warwick.ac.uk

S.1 Methods

Sample preparation

The GUVs have been prepared by means of electroformation, following the procedure detailed in the

supplementary information of reference [1]. We use DOPC and the fluorescently labelled lipid Texas

Red DHPE (1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine, triethylammonium salt), both from

Avanti Polar Lipids, which were dissolved in chloroform in proportions 99.2%− 0.8%wt, and the final

concentration of the solution was 25 mg mL−1. A drop (20 µL) of solution was spin coated on half of

the surface of an Indium Tin Oxide (ITO) coated glass slide at 60◦C, prewet with isopropanol. The slide

is then put in a desiccator, under low vacuum for 1 h. The lipid-covered portion of ITO slide, a second

ITO slide and a plastic U-shaped spacer (AlteSilTM Silicone) were arranged to form a capacitive cell,

with the ITO-covered surfaces facing the interior. The cell was the filled with a 197 mM sucrose solution

and then sealed with parafilm. A sinusoidal electric potential with frequency of 10 Hz, and peak-to-peak

tension of 1 V was applied across the cell for 2 hours, after which the frequency was reduced to 2 Hz for

1 hour. The electric field promotes hydration, generating GUVs, and subsequent detachment from the

lipid-covered ITO slide [2]. The resulting GUV suspension was diluted in a 200 mM glucose solution in

1:9 proportion and stored at 4◦C in a plastic vial. Vesicle were used within 2 days.

Scanning confocal microscopy

The microscopy experiments were performed using a Leica TCS SP5 II confocal scanning inverted mi-

croscope on vesicles that are sedimented to the bottom of the measurement chamber; the reason for this

is practical, as the sedimentation of GUVs minimises their diffusive motion in the suspension. The mi-

croscope is equipped with an HCX PL APO CS 40.0× oil immersion objective with numerical aperture

NA = 1.30. Illumination is provided by a λ = 594 nm He-Ne laser. Experiments are carried out at room

temperature T = 22◦C. We calibrated for the dependence of the focal depth (namely, the width of the

fitted Gaussian to the intensity profile along the z-direction, out of the focal plane) with the pinhole size,

as shown in Fig. S.1a. Also, we measured the Gaussian width of the point spread function in the focal

plane as function of the pinhole size, see Fig. S.1b.
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Figure S.1. Experimentally measured full widths at half maximum (FWHMs) of the intensity profiles:
(a) along the z-direction (out of the focal zone), and (b) within the xy plane (i.e. the focal plane), both
as a function of the pinhole size of the microscope. The red dashed line is a quadratic fitting, with a
vanishing gradient at zero pinhole size.

The illumination spot is raster-scanned across the field of view at a line frequency ν = 8 kHz. The ac-

quisition time of a point of the projected membrane τ 'W /v ranges between 1–2 ms in our experiments,

where v = pν is the effective velocity of the line scanning front, perpendicular to the scan direction, and

W is the lateral width of the illumination spot. This non-synchronous acquisition leads to a cutoff in

the mode spectrum, q.Q, given by the condition that the mode half-lifetime associated to the highest

(fastest relaxation) mode, from Eq. (S.2.20), should be longer than the time to scan across its wavelength;

namely, define Q by 1
2 τQ ≡ 2πR/(vQ). Thus, we can assume that each portion of the raster scan of size

2πR/Q samples membrane configurations from an equilibrium distribution, whereas the amplitudes on

separate slices may have become temporally decorrelated. We typically obtain Q ≈ 20.

We performed a numerical study to evaluate specifically scanning artefacts, with respect to the use

of a common confocal microscope. Using a standard Metropolis Monte Carlo (MC) [3], we simulate in

2D a periodic fluctuating string of N = 100 particles interacting with harmonic stretching and bending

potentials. The x-coordinate of each particle is constrained to a distance l (equal to the equilibrium bond

length) from its neighbours, while the y-coordinate is allowed to fluctuate, so that the total energy of the

system is

E =
N

∑
i=1

1
2

α

[√
(yi+1− yi)

2 + l2− l
]2

+
N

∑
i=1

1
2

βθ
2
i , (S.1.1)

where αl2 = β = 10kBT , yi is the y-coordinate of the ith particle, θi is the angle formed by the bonds

of the ith particle with its neighbours (with N +1 ≡ 1 to enforce perodicity). Fig. S.2(a) shows the

mean-squared amplitude of the string’s fluctuation spectrum averaged over a trajectory of 2×106 MC

cycles, each corresponding to 100 individual displacement moves along the y direction (with a maximum

amplitude equal to l). As expected for a fluctuating line with this physics, the spectrum follows q−2 and

q−4 regimes, which mirrors the curves found for projected membrane fluctuations (slopes between q−1

and q−3). In general, MC is unsuitable to generate realistic dynamics. However, in multiple instances

it has been demonstrated theoretically numerically how MC trajectories reproduce accurately Brownian

dynamics if hydrodynamic interactions are negligible and MC moves are local and have small amplitude

[4, 5]. In our case, this is reflected by Fig. S.2(b), where we plot the q dependence of the mode decay
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time τ , expressed in units of 10 MC cycles. As expected τ(q) monotonically decreases.

The fluctuating-string trajectory is used to generate the (binary) video of a fluctuating circle mimick-

ing the contour of a GUV. This “full framerate” video, is then re-sampled simulating the raster-scanning

of a confocal microscope operating at different speeds, to create a series of videos that faithfully repro-

duce potential artefacts. These circles are then converted back to strings, and their fluctuation spectra

compared to the originally simulated one.

In Fig. S.2(c) we show such comparison, expressing the simulated imaging framerate Rsc in units

of the inverse decay time of fluctuation mode q = 2 (τ(2)). As the framerate drops, the spectra deviate

from the reference curve, with the amplitude of high-q modes being artificially increased by contour

disruption caused by scanning. As expected, lower framerates cause lower-q modes to be affected.

Using the scanning framerate of our experimental setup, and estimating τ(2) from Eq. 2 of the main

text using the values of k and σ obtained by the fitting reported in figure 2a, we find Rsc τ(2) ≈ 14.7.

At this framerate, Fig. S.2(c) predicts negligible deviations of the “scanned” spectrum from the ideal

one for q . 20. This value is not dissimilar from the one estimated theoretically, despite the similarities

between the MC-simulated trajectory and the experimental data are only qualitative (the former are

generated from the fluctuations of a string rather than a membrane). One should also note that in our data

analysis algorithm the upper boundary qmax of the fitted q-interval is chosen as the one that maximises the

posterior probability (see SI section S.3). Typically this optimal value is around 13-14 (see Fig. S.6), thus

smaller than Q. Naively, one may find surprising how, in scanning mode, an accurate sampling of the

contour can still be achieved even when imaging at relatively low framerates. For instance, bright field

videos for flickering are recorded at much greater speed, typically exceeding 230 fps, as compared to

the 15 fps of our confocal. This apparent paradox is however resolved if one considers that in scanning

mode the image is reconstructed line by line. As explained when deriving our theoretical estimate of

Q, what matters for the accurate sampling of each fluctuation mode is that the imaging front covers a

distance equal to the fluctuation wavelength faster than the decay rate of the mode. Since fast-decaying

modes also have smaller wavelengths, they can be effectively sampled even if the time require to capture

an entire frame is much larger than their decay time τ . To exemplify this, in Fig. S.2(c) we compare the

effects of scanning with a “global shutter” imaging used in bright field videos, where fluctuations are

averaged over a time equal to the inverse framerate (or the shutter time, if smaller). It it immediately

clear how for a given framerate, the artefacts of a global shutter are significantly more severe and lead to

an apparent suppression of the fluctuations.

Fluctuation spectrum

In order to retrieve the fluctuation spectrum from the videos of the vesicles, the position of the contour

points in every frame have to be determined with sub-pixel resolution. Typically, in case of phase-contrast

videos, the membrane position is determined by finding the inflection point in the radial intensity profile,

as in [6]. In case of fluorescence videos, the maximum of the intensity profile is commonly used to mark

the membrane position. Building on our previous methods [7], we developed a refined algorithm based

on template correlation to detect the contour position independently from the imaging mode employed
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Figure S.2. Simulating scanning and averaging artefacts on the imaging of fluctuating vesicles. (a)
Fluctuation spectrum of a bead-and-spring chain simulated by Metropolis MC. (b) Correlation time of
the fluctuation modes in units of 10 MC cycles. (c) Ratio between the fluctuation spectra from finite-
framerate imaging simulations and the “full-framerate” spectrum of panel (a). Solid lines mark imaging
performed by raster scanning, imitating a scanning laser confocal microscope. Dashed lines indicate
global-shutter imaging (simple time averaging). Framerate Rsc is expressed in units of the decay mode
τ(2).

to acquire the videos. The results of the two methods are identical. The contour is typically expressed in

polar coordinates (r,ϕ) with respect to the centre of the vesicle. The algorithm is as follows:

1. the centre and radius R of the vesicle are manually selected on the first frame (Fig. S.3a);

2. a ring region C(r,ϕ) centred around the contour (namely, a strip in polar coordinates) of appropri-

ate width is extrapolated from the image, by using a cubic interpolation;

3. a template of the radial profile is calculated from the ring of the first frame through an automatic

averaging procedure (Fig. S.3b); then, we compute the two-dimensional correlation U(r,ϕ) of the

template with the contour ring itself. Here, U(r,ϕ) is given by the point where the profile measured

at each ϕ has maximum correspondence with the template.

4. the measurement of the radial position of the contour, say ρ(ϕ), is obtained by a parabolic fitting

of U around its maximum for every value of ϕ (Fig. S.3c).

The algorithm cycles three times from point 2 up to point 4, each time refining the estimate of the

centre of vesicle and mean radius R, using the previously obtained contour (Fig. S.3d). The procedure

is repeated for every frame, using the centre and mean radius calculated for the previous frame as the

starting point for the current frame. The contour ρ(ϕ, t) is then saved as a 2D array, as shown in (Fig.

S.3c). The spectrum of contour fluctuations about the mean radius is calculated using a Fast Fourier

Transform algorithm (e.g. in Matlab).

Spectrum fitting

The data analysis described in the main text is implemented as a Mathematica routine (DataAnalysis.nb).

The file is divided into sections.
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Figure S.3. In clockwise order: a) from the last estimate of center and mean radius R, a ring region
around the equator of the vesicle is selected using cubic interpolation. In the first frame, center and R are
manually selected. b) the ring measured on the first frame is averaged along ϕ to calculate a template.
This used to calculate the two-dimensional correlation U(r,ϕ) of the template with the contour ring itself.
c) At each value of ϕ , the contour position is calculated via parabolic fitting of U(r,ϕ). d) The position
of the contour of the vesicle is used to refine the position of the center and the value of R. The algorithm
cycles (orange arrows) three times between points b)–d), then it skips to the next frame.

• In the “Definitions” section, the theoretical expression of the mean square amplitude
〈
µ̄q(t) µ̄∗q (t)

〉
is set as in Eq. (S.2.38).

• The values of the focal depth and of the point-spread function of the microscope as a function of

the confocal pinhole size must be provided in the “Calibration Data” section.

• The experimental data are loaded (“Experimental Data” section). The fluctuation spectrum of

the GUV calculated using the Matlab algorithm is exported as a text file in json format. Several

examples are provided along with the analysis code in the folder “DataExample”.

• The best-fit parameters to the experimental data are found by means of a maximum likelihood

estimate defined as the minimisation of χ2
∆
(κ, σ̄), defined in Eq. (S.3.1). An example of its use is

reported in the file.

• The file also contains a function that performs the fit while finding the best q-range for the fit, ac-

cording to the maximization of the posterior probability defined in Eq. (S.3.9). This function yield

more accurate results when several measurements at different values of ∆ are available. These mea-

surements can either be the same vesicle measured using several values of focal depth, different

vesicles (with different R) measured at fixed focal depth, or both.

For the routine to work effectively, the necessary calibration data (see the “Confocal microscopy” sec-

tion) are necessary. Some minor modifications might be required to specify the exposure time and the
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Figure S.4. Fluctuation spectrum for a GUV (R≈ 8.9 µm) imaged via phase contrast microscopy, with
∆ = 0.10 and τ ≈ 4 ms, on a log-log scale. Lines are the best-fit for the “standard” model (i.e. incorrectly
assuming ∆ = 0, red), and for our model with ∆ = 0.10 (blue). Both fits are of similar quality, but their
best-fit values are significantly different, see the inset table (same colors). In this experiment, we use
qmin = 3; the q-cutoffs are found to be qc = 13 and qw = 28, therefore we fixed qmax = 20.

temperature characteristic of the experiment. The theoretical background of these fitting routines is fully

detailed in the “Data analysis” section of this document.

Application to non-confocal imaging

In this subsection we report a proof of concept example of the use of our method to analyse a non-

confocal “flickering”experiment. In this example, we use our routines to analyse a video acquired using

the same microscope used for the confocal microscopy experiments, used now in Phase Contrast imaging

mode. For this phase-contrast experiment, we used a Nikon Hcx PL Fluotar L 40X objective, operating

in air, with numerical aperture NA = 0.6. We estimate the focal depth to be 2µm in these conditions,

a value compatible with the output of the standard formula d = λ

NA2 . The fitting was performed using

qmin = 3, as in the confocal experiment. Since the q-cutoffs are found to be qc = 13 and qw = 28, we

set fitting limit qmax = 20. Results are reported in Fig. S.4. As shown by the inset, our method applied

to phase contrast experiments still yields a value of κ = 18kBT which is in agreement with the literature

values for DOPC.

S.2 Theoretical Model

Quasi-spherical vesicles

The usual theoretical description of GUVs is treated within a quasi-spherical approximation, where the

membrane surface, say S , is parametrised by the spherical angular coordinates (θ ,ϕ), with the surface
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positional vector given by

R(θ ,ϕ) = R [1+u(θ ,ϕ)] r̂(θ ,ϕ) , (S.2.1)

where u(θ ,ϕ) is a local deviation about a reference sphere of radius R in a Monge-type representation,

and r̂(θ ,ϕ) is the radial unit vector normal to this sphere. The volume V0 enclosed by the membrane of

GUVs is considered to be constant, which in turn defines R := (3V0/4π)1/3.

Furthermore, the fluctuations about the reference sphere are assumed to be small and slowly varying

(that is, the magnitude |u(θ ,ϕ)| � 1 and the gradient |∇u(θ ,ϕ)| � 1), so that the free-energy F , see

equation (2) in the Letter, can be written as a quadratic expansion in u(θ ,ϕ). To obtain this expansion, we

follow the works of [8] and [9], where the area of the vesicle A :=
∫
S dS, its volume V := 1

3
∫
S dS (n̂ ·R),

with n̂ as its surface normal, the integrated mean-curvature term Q1 :=
∫
S dSH, and also the bending

term Q2 :=
∫
S dSH2 can be approximated by a second-order Taylor expansion in u as follows:

A = 4πR2−R2
∫

π

0

∫ 2π

0

[
2u+u2 +

1
2
(∇u)2

]
sin(θ)dθ dϕ, (S.2.2)

V =V0 +R3
∫

π

0

∫ 2π

0

(
u+u2)sin(θ)dθ dϕ, (S.2.3)

Q1 = 4πR+R
∫

π

0

∫ 2π

0

[
u+

1
2
(∇u)2− 1

2
(
∇

2u
)]

sin(θ)dθ dϕ, (S.2.4)

and

Q2 = 4π +
∫

π

0

∫ 2π

0

[
u
(
∇

2u
)
−
(
∇

2u
)
+

1
2
(∇u)2 +

1
4
(
∇

2u
)2
]

sin(θ)dθ dϕ, (S.2.5)

respectively, where the differential operators ∇ and ∇2 are defined with respect to the metric of a unit

sphere, that is,

∇ := eθ

∂

∂θ
+

eϕ

sin(θ)
∂

∂ϕ
, and ∇

2 :=
1

sin(θ)
∂

∂ϕ

[
sin(θ)

∂

∂ϕ

]
+

1
sin2(θ)

∂ 2

∂ϕ2 , (S.2.6)

with eθ and eϕ as the unit vectors associated to the spherical angular coordinates.

Therefore, by ignoring the Gaussian curvature term in F due to the constrained topology of GUVs,

the effective free-energy of the fluid membrane S is given by F = C0 A +C1 Q1 +C2 Q2, where C0,

C1, and C2 are defined by

C0 = σ +2κ H2
0 , C1 =−2κ H0, and C2 = 2κ, (S.2.7)

where σ is the surface tension, H0 is the spontaneous curvature, and the curvature parameters κ is the

bending modulus. Also, by expressing u(θ ,ϕ) in the basis of spherical harmonics Y m
n [10]:

u(θ ,ϕ) =
n∞

∑
n=0

n

∑
m=−n

Un,mY m
n (θ ,ϕ), (S.2.8)
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where Un,m is the amplitude associated to each mode (n,m) and n∞ is an ultraviolet cutoff1, then the

effective free-energy F can be written in the following diagonalised form (a full derivation can be found

in [9]):

F = 4πκ (2+ σ̄)+
1
2

n∞

∑
n=2

H(n)
n

∑
m=−n

|Un,m|2, (S.2.9)

where |Un,m| is the complex modulus of the harmonic amplitude Un,m, the function H(n) is defined by

H(n) = κ (n−1)(n+2) [ σ̄ +n(n+1)], (S.2.10)

and σ̄ is the reduced surface tension, namely

σ̄ =
σ R2

κ
−2H0 R+2H2

0 R2. (S.2.11)

The zeroth order coefficient U0,0 in equation (S.2.8) can be fixed by employing the constraint that the

volume V of the GUVs remains unchanged under a small local deformation u(θ ,ϕ), that is, V = V0 in

(S.2.3). This implies the following condition:

U0,0 =−
1√
4π

n∞

∑
n=0

n

∑
m=−n

|Un,m|2 , (S.2.12)

which essentially corresponds to a rescaling of the frame radius [8]. Thus, its contribution to (S.2.9)

can be omitted without loss of generality. It is noteworthy to mention that the three spherical harmonic

modes given by n = 1 do not affect the area A and the effective free-energy F , as they correspond to

pure translations of the vesicle, which incur no energetic cost since H(n = 1) = 0. As a result, the sum

in (S.2.9) can be restricted solely to modes n≥ 2 [9].

By introducing a fictitious external field in (S.2.9), as a vector J := {Jn,m}, that linearly couples to

the amplitude vector U := {Un,m}, where the integers n ≥ 2 and |m| ≤ n, then equation (S.2.9) can be

concisely rewritten in terms of the following functional form:

F [J,U] = 4πκ (2+ σ̄)+
1
2

UTHU∗−JTU, (S.2.13)

where H is a diagonal matrix whose components are given by H(n), and the symbols ∗ and T denote

a complex conjugate and a transpose, respectively. As a consequence, the thermodynamic properties of

the model can be obtained from the partition function [11]:

Z [J] =
∫

DU exp
(
−F [J,U]

kBT

)
, (S.2.14)

where the integration measure DU := ∏
n∞

n=2{∏
n
m=0 dℜ[Un,m]}{∏

n
m=1 dℑ[Un,m]}, with ℜ [Un,m] and

ℑ [Un,m] being the real and imaginary parts of Un,m. Due to the quadratic nature of (S.2.13), the partition

1The upper mode cutoff n∞ ' R/ξ , where ξ is on the order of the membrane thickness. Thus, using a typical radius of
GUVs, say R∼ 25 µm, and a value of ξ ∼ 5 nm, then n∞ ∼ 5×103.
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function in (S.2.14) can be analytically computed, up to an unimportant prefactor, as follows [11]:

Z [J] ∝ exp
(

JTH−1J∗

2kBT

)
, (S.2.15)

where H−1 is the inverse matrix of H. Hence, the thermodynamic average of the flickering amplitudes

Un,m and their correlation functions can be determined by using the derivatives of lnZ with respect to

the fictitious external fields Jn,m [11], namely

〈Un,m〉=
∂

∂Jn,m

(
kBT lnZ [J]

)∣∣∣∣
J=0

= 0 (S.2.16)

and 〈
Un,m U ∗

k, `
〉
=

∂ 2

∂Jn,m ∂J ∗
k, `

(
kBT lnZ [J]

)∣∣∣∣∣
J=0

=
kBT
H(n)

δnk δm`, (S.2.17)

where δnm is the Kronecker delta function, which equals one if n = m and vanishing otherwise. Hence,

the equation (S.2.17) shows that the harmonic amplitudes are completely uncorrelated if the spherical

modes n 6= k, and the mean-squared deviations
〈
|Un,m|2

〉
are independent of m and also a function of the

membrane elastic constants, i.e. the bending modulus κ and the reduced surface tension σ̄ . Thus, they

can be measured if the local variations in the three-dimensional shape of the GUVs can be observed and

recorded over a sufficiently long time span.

Projection of surface fluctuations

A lipid vesicle observed using light microscopy yields only a two-dimensional projection of its mem-

brane onto the focal plane of the microscope. Therefore, the contact between the experimentally mea-

sured contours (which are determined by an edge-detection algorithm) and the three-dimensional model

of the membrane surface, as given by (S.2.17), has typically been established by focusing on the two-

dimensional contours obtained through the intersection of the vesicle with the focal plane of the objective.

This cross-sectional plane is usually chosen to be at the equator of the lipid vesicle (θ = π/2),

where the diameter of the contours is found to be the largest, and also where the contrast is typi-

cally maximal2. Thus, the radial position of the membrane in the equatorial plane of the vesicle,

ρ0(ϕ, t) := ‖R(θ = π/2, ϕ, t)‖, can be used as an experimental observable, which now has an explicit

time dependence. The time-average of the squared deviations in ρ0(ϕ, t) about the mean radius R can be

related to (S.2.17) by assuming the ergodic hypothesis (namely, a long time-average of a macroscopic

variable is equivalent to its thermal average [11]). In other words, the Fourier transform of the variations

2In the case of lipid vesicles which enclose a fluid that has the same density as the bulk solvent, the maximum contrast
and the largest diameter of the contours are indeed found at θ = π/2. However, the interior fluid is typically of a different
density to ensure sedimentation of the vesicles to a substrate. In this case, the shape of vesicles is perturbed due to gravitational
effects [12], which means that the position of the plane with the maximum diameter is no longer located at the equator of
GUVs. However, such gravity effects are negligible if ∆ρ gR4 . κ (12+ σ̄), as calculated in [12], where g = 9.81 m/s2 and
∆ρ is the density difference between the inside and the outside of the vesicle. Typically, this condition is readily satisfied in
flicker spectroscopy experiments [6] and thus the gravitational effects are ignored throughout this study.
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in ρ0(ϕ, t) about its mean value, that is,

uq(t) :=
1

2π

∫ +π

−π

dϕ e−iqϕ u
(

θ =
π

2
, ϕ

)
, (S.2.18)

which is non-dimensionalised by R, can be used to obtain a fluctuation spectrum in terms of the integer

Fourier modes q, which is defined by the following autocorrelation function:

〈
uq(t)u∗q(t)

〉
t
= ∑

n≥q
E 2

n,q
〈∣∣Un,q

∣∣2〉, (S.2.19)

where the coefficients En,q = Y q
n (θ = π/2, ϕ = 0), and 〈·〉t denotes a time-average over the total du-

ration of the experiment (which is identical to the thermal average as the system is assumed to be

ergodic). The result in (S.2.19) can be derived by employing the equations (S.2.8) and (S.2.17), to-

gether with the orthogonality of the spherical harmonic functions Y m
n , and the double summation identity

∑
∞
k=0 ∑

+`
k=−`Bk, ` = ∑

∞
`=−∞ ∑

∞
k=`Bk, `.

Another experimental issue, which further complicates the comparison of the experimental data with

the fluctuation spectrum (S.2.19), is that the observed two-dimensional contours are, in practice, averaged

over the integration time τ of the microscope. This introduces an experimental limitation that results in

significant averaging effects of the shape fluctuations when their characteristic life-times are shorter than

the acquisition time of the microscope. Hence, its consequences on the fluctuation spectrum have been

widely studied [6]. To quantitatively account for this averaging, the relaxation times τn associated to each

spherical harmonic mode needs to be adequately determined. By using a simple viscoelastic theory of a

spherical vesicle, as derived in [9], we find that Un,m(t) = Un,m(0)e−t/τn , where the mono-exponential

decay time of each mode are found to be

τn =
R3

H(n)

[
ηin

(n+2)(2n−1)
n+1

+ηout
(n−1)(2n+3)

n

]
, (S.2.20)

with ηin and ηout as the viscosities of the surrounding fluid found in the inside and the outside of the

vesicle, respectively. As a result, due to the finite acquisition time τ of the microscope (which is usually

on the order of microseconds), the time correlation function of the equatorial fluctuations in (S.2.19)

becomes [9]: 〈
ūq(t) ū∗q(t)

〉
t
= ∑

n≥q
E 2

n,q
〈∣∣Un,q

∣∣2〉 τ 2
n

τ 2

(
1− e−τ/τn

)2
, (S.2.21)

where we define ūq(t) := τ−1∫ τ

0 dt ′ uq(t + t ′). Thus, the methodology involves relating (S.2.21) to the

spectrum computed from the experimentally observed contours, which allows us to estimate the mem-

brane bending modulus and its surface tension.

Although this approach of projecting the fluctuations onto the equatorial plane may appear to be a

reasonable approximation, we maintain that the equatorial plane of the GUVs is not what is actually

observed under an optical microscope. Strictly speaking, the equator of the vesicle contains a vanishing

area in projection, and it is therefore invisible to the usual video-microscopy techniques. Thus, we

assume that what is observed is a projection over a strip of membrane material within a small region in
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the vicinity of the equator. This strip can support a spectrum of surface modes, which are averaged out

in projection.

Measured intensity from quasi-spherical vesicles

To examine the effect due to the projection of the shape undulations onto the focal plane of the micro-

scope, we need to understand how the averaging of fluctuations out of this plane affects the light intensity

entering the camera. However, since the latter usually depends on the specific imaging technique used

in the experiments and various other optical considerations, the full analysis is a highly non-trivial task.

Here, we introduce an approach, which allows us to construct an intensity field that mimics closely some

of the features of its experimental counterpart.

Firstly, we consider that light arriving from a point on the membrane surface that is located at a height

z above, or below, the focal plane (or equivalently, the equatorial plane of the vesicle) has an intensity

which is scaled by a Gaussian kernel G (z), namely

G (z) = exp
[
− 1

2∆2

( z
R

)2
]
, (S.2.22)

where R is the mean radius of the vesicle, and ∆ is a dimensionless parameter that characterises the focal

depth of the microscope.

Secondly, we assume that the vesicle radiates light isotropically (e.g. its membrane is uniformly

fluorescent), and furthermore there is no refraction or absorption, which implies that the infinitesimal

radiant power dA emanated by a small membrane patch dA is given by dA = Î0 dA , where Î0 is the

intensity detected at z = 0. As a result, the observed intensity field in the focal plane, say Î (r,ϕ), is

proportional to the projected mass density of membrane, since dA=I0 dA = Î (r,ϕ)dAp, where Ap is

the surface element given by the projection of the membrane patch dA onto the focal plane. This means

that Î (r,ϕ) is purely a geometrical object that only depends on the three-dimensional configuration of

the vesicle.

By taking into account the Gaussian scaling in (S.2.22), we can construct an intensity field of the

light entering the camera, analogous to Î (r,ϕ), as follows:

I (r,ϕ) ∝

∫∫∫
dΩ G

(
r′cosθ

′)
δ
(
r− r′ sinθ

′)
δ
(
r′ϕ ′ sinθ

′− rϕ
)

δ
(
r′−

∥∥R(θ ′,ϕ ′)
∥∥) , (S.2.23)

where the volume integral
∫∫∫

dΩ :=
∫

∞

0 dr′ r′2
∫

π

0 dθ ′ sinθ ′
∫ 2π

0 dϕ ′, δ represents a Dirac delta function,

and the position vector R(θ ′,ϕ ′) is defined by (S.2.1). Here, r′ measures the radial distance from the

centre of the vesicle, and (θ ′,ϕ ′) are the usual spherical angular coordinates, with θ ′= 0 (or π) indicating

the normal direction of a point above (or below) the focal plane of the objective. On the other hand, the

variables r and ϕ are the polar coordinates in the equatorial plane, with the origin chosen to be at the

centre of the vesicle. Moreover, the first delta function in (S.2.23) gives the projection of radial distances

onto the focal plane, the second one specifies that the azimuthal angles are equivalent in both three-
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dimensional and two-dimensional reference frames, and the third one is a constraint that locates the

position of the membrane surface relative to the centre of the vesicle. Thus, by using a quasi-spherical

representation, the volume integral over these Dirac delta functions yields the projected shape of the

vesicle for a given realisation of the local field u(θ ′,ϕ ′).

Lowest-order radial moment

The simplest way of extracting information from (S.2.23) is to analyze the first radial moment of the

intensity field,

ρ
∆
(ϕ) =

∞∫
0

rI (r,ϕ)dr

∞∫
0

I (r,ϕ)dr
. (S.2.24)

Reassuringly, this object recovers in the limit of ∆→ 0 (see equation (S.2.37) later in this section) the

experimental observable ρ0(ϕ), namely the radial position of the membrane in the equatorial plane of

the vesicle. By integrating over the angular variables θ ′ and ϕ ′ in (S.2.23), the intensity field I (r,ϕ)

can be reduced to a single integral, that is,

I ∝

∞∫
r

dr′
G (r′cosΘ)

RcosΘ

{
δ

[
r′

R
−1−u(Θ,ϕ)

]
+δ

[
r′

R
−1−u(π−Θ,ϕ)

]}
, (S.2.25)

where Θ= arcsin(r/r′) is introduced as a shorthand notation for the sake of clarity. Hence, using the sub-

stitutions r = ξ R and r′ = ξ Rcosh(ψ) in the equation (S.2.25), then the expression of the first moment

(S.2.24) is given by

ρ
∆
(ϕ) =

R
∞∫
0

ξ dξ

∞∫
0

dψ ξ cosh(ψ) [D(ψ,ξ ,Θ)+D(ψ,ξ ,π−Θ)]e−
ξ 2 sinh2 ψ

2∆2

∞∫
0

dξ

∞∫
0

dψ ξ cosh(ψ) [D(ψ,ξ ,Θ)+D(ψ,ξ ,π−Θ)]e−
ξ 2 sinh2 ψ

2∆2

, (S.2.26)

where the function D is defined by

D(ψ,ξ ,Θ̂) := δ
[
ξ coshψ−1−u(Θ̂,ϕ)

]
. (S.2.27)

Moreover, the delta functions in (S.2.26) can be eliminated by changing the order of integration and then

evaluating the integrals over the variable ξ , which yields

µ(ϕ) =

1∫
0

dω (1+uN)
2 exp

(
− (1+uN)

2

2∆2 ω2
)
+(1+uS)

2 exp
(
− (1+uS)

2

2∆2 ω2
)

1∫
0

dω
(1+uN)√

1−ω2 exp
(
− (1+uN)2

2∆2 ω2
)
+ (1+uS)√

1−ω2 exp
(
− (1+uS)2

2∆2 ω2
) , (S.2.28)

where we define µ(ϕ) := ρ
∆
(ϕ)/R, uN := u(Θ,ϕ) and uS := u(π −Θ,ϕ), and a change of variables

ω = tanh(ψ) is used to further simplify the expression.
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Since the shape undulations are assumed to be small compared to the mean radius of the quasi-

sphere, namely |u| � 1, the equation (S.2.28) can be expanded to first order in uN and uS, and found to

be a function of only ũ := uN +uS, as follows:

µ(ϕ) = µ0 +

1∫
0

dω

(
2∆2+ω2

∆2 −µ0
∆2+ω2

∆2
√

1−ω2

)
ũ(ω,ϕ)e−

ω2

2∆2

2
1∫
0

dω√
1−ω2 e−

ω2

2∆2

+ O
(
ũ2), (S.2.29)

where the coefficient µ0 is the zeroth order term in the expansion of µ(ϕ), which is given by

µ0 =

1∫
0

dω e−
ω2

2∆2

1∫
0

dω√
1−ω2 e−

ω2

2∆2

=

∆
√

π√
2

erf
(

1
∆
√

2

)
π

2 I0
( 1

4∆2

)
e−

1
4∆2

∆→0
= 1, (S.2.30)

with erf as the error function and I0 as the modified Bessel function of the first kind of order zero [10].

Thus, equation (S.2.29) gives the first order perturbation about the spherical configuration, µ̂(ϕ) :=

µ(ϕ)−µ0, namely

µ̂(ϕ) =
exp
( 1

4∆2

)
πI0
( 1

4∆2

) ∫ 1

0
dω

(
2∆2 +ω2

∆2 −µ0
∆2 +ω2

∆2
√

1−ω2

)
ũ(ω,ϕ)e−

ω2

2∆2 . (S.2.31)

Analogous to the calculation of the equatorial fluctuations, this azimuthal function can now be used

to obtain a fluctuation spectrum by Fourier transforming it in the angle ϕ , yielding µ̂q, and subsequently

by computing the thermal ensemble average of
∣∣µ̂q
∣∣2. By Fourier transforming equation (S.2.31) with

respect to the angle ϕ , this yields

µ̂q :=
1

2π

∫ +π

−π

dϕ µ̂(ϕ)eiqϕ =
∫ 1

0
dω N (ω,∆) ũq(ω), (S.2.32)

where in the last step we use the explicit form of (S.2.31) and then interchange the order of integration.

Hence, by defining the Fourier transform of ũ(ω,ϕ) as ũq(ω), and also by absorbing the other remaining

terms in N (ω,∆), then the final result in equation (S.2.32) can be obtained.

By using the basis representation in (S.2.8) and by rewriting the spherical harmonic functions as

Y m
n (θ ,ϕ) = eimϕ Pm

n (cosθ), where

Pm
n (cosθ

′) =

√
2n+1

4π

(n−m)!
(n+m)!

Pm
n (cosθ

′), (S.2.33)

with Pm
n being the associated Legendre polynomials [10], then the Fourier transform of ũ(ω,ϕ) is found

to be

ũq(ω) = ∑
n≥q

Un,q [P
q
n (ω)+Pq

n (−ω)] = ∑
n≥q

Un,q Pq
n (ω)

[
1+(−1)n+q ], (S.2.34)

where the identity Pq
n (−ω) = (−1)n+q Pq

n (ω) is used in the last step [10]. As a result, using (S.2.32),
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Figure S.5. Log-log plot of the mean squared amplitudes
〈
| µ̂q|2

〉
as a function of the azimuthal mode

number q for some values of the focal depth ∆. Here, κ = 20 kBT and σ̄ = 100, and a straight line
interpolation is used between the points.

the mean squared amplitude of each Fourier mode can be determined as follows (see Figure S.5):

〈
| µ̂q|2

〉
= ∑

n≥q

〈∣∣Un,q
∣∣2〉{[1+(−1)n+q ]∫ 1

0
dω N (ω,∆)Pq

n (ω)

}2

, (S.2.35)

where the orthogonality of the flickering amplitudes in (S.2.17) is employed. Moreover, using the explicit

form of N (ω,∆), the term in the curly brackets, say Ln,q, can be written as

Ln,q =
1+(−1)n+q

π I0
( 1

4∆2

)
e−

1
4∆2

∫ 1

0
dω Pq

n (ω)

[
2∆2 +ω2

∆2 −
µ0
(
∆2 +ω2

)
∆2
√

1−ω2

]
e−

ω2

2∆2 , (S.2.36)

which recovers the coefficients En,q of (S.2.19) in the limit of ∆→ 0 as expected. This can be shown by

a method of steepest descent. Namely, when ∆ goes to zero, the exponential term within the integrand of

(S.2.36) vanishes unless ω = 0. Therefore, the term in the square brackets of (S.2.36) tends to unity, and

the integral reduces to

lim
∆→ 0

Ln,q = lim
∆→ 0

1+(−1)n+q

π I0
( 1

4∆2

)
e−

1
4∆2

∫ 1

0
dω Pq

n (0)e−
ω2

2∆2 = lim
∆→ 0

µ0

2
[

1+(−1)n+q ]Pq
n (0), (S.2.37)

which leads to En,q by using (S.2.33), (S.2.30), and the property that Pm
n (0) = 0 when n+m is an odd

integer number [10]. Although it is possible to find a closed form expression for Ln,q by performing the

integral exactly, the general result involves two finite sums over four confluent hypergeometric functions

of the first kind [10], and thus it is not any more enlightening than the result given by (S.2.36). However,

this means that on a practical level Ln,q can be tabulated for some fixed n and q, instead of numerically

evaluating the integral (see LTable.nb and Table S.1).
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The existing approach to determine the bending modulus in flicker spectroscopy experiments in-

volves relating the time correlation function of the equatorial fluctuations, as given (S.2.21), to the fluc-

tuation spectrum measured from the observed contours [6]. Analogous to the spectrum in equation

(S.2.21), we can construct a time correlation function for the fluctuations in the first radial moment of

the intensity field (S.2.23), namely

〈
µ̄q(t) µ̄

∗
q (t)

〉
t = ∑

n≥q
L 2

n,q
〈∣∣Un,q

∣∣2〉 τ 2
n

τ 2

(
1− e−τ/τn

)2
, (S.2.38)

where the time-average µ̄q(t) := τ−1∫ τ

0 dt ′ µ̂q(t + t ′), τ is the acquisition time of the microscope, τq is

the characteristic relaxation time associated to each spherical harmonic mode, as given by (S.2.20), and

the functions Ln,q and
〈∣∣Un,q

∣∣2〉 are defined by (S.2.36) and (S.2.17), respectively.

S.3 Data analysis

The best-fit parameters to the experimental data are found by means of a maximum likelihood estimate

[13] for the model in Eq. (S.2.38), namely we seek to minimise the following function:

χ
2
∆
=

qmax

∑
q=qmin

[
Fq(∆)−

〈
µ̄q(t) µ̄∗q (t)

〉
t

Σq(∆)

]2

, (S.3.1)

where Σq(∆) is the standard error in the mean associated to each Fq(∆) measured for a particular ∆ (focal

depth per R). This is an application of Bayes’ theorem. Using the components of the vectors F∆ and X
to denote the measured spectrum

{
Fq(∆)

}
and the parameters of interest (e.g. we have X = (κ, σ̄) for a

single vesicle, or X = (κ, σ̄1, σ̄2, σ̄3) for three vesicles that have the same lipid composition but different

surface tensions – see later), respectively, we can tersely write that the posterior probability

P(X |F∆, I) ∝ P(F∆ |X, I) · P(X |I), (S.3.2)

where I denotes all the relevant background information [13]. The last term in Eq. (S.3.2) is the prior

probability that indicates everything we know about X before the analysis of the data F∆. In order to

reflect complete ignorance (unbiased knowledge) of the latter, this is commonly taken to be a uniform

probability, namely we have P(X |I) = constant for all values of X [13]. Using this uniform assignment,

then Eq. (S.3.2) simply becomes P(X |F∆, I)∝ P(F∆ |X, I). Thus, the best estimate of X (say X0), which

is given by the maximum of the posterior P(X |F∆, I), is equivalent to the solution that gives the largest

value for the likelihood probability of the measured data P(F∆ |X, I). If we assume that the spectral

data F∆ are entirely independent, which is motivated by the uncorrelation of modes in Eq. (S.2.17),

then the joint probability P(F∆ |X, I) can be written as a product of the probabilities for the individual

measurements:

P(F∆ |X, I) =
qmax

∏
q=qmin

P(Fq(∆)
∣∣X, I) (S.3.3)
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where qmin and qmax represent the lower and upper bound of the range in the measured spectrum used

for the analysis. The choice of these bounds is discussed later in this section. If we also assume that the

noise associated with the experimental measurements can be described by a Gaussian process, then the

probability of an individual datum is given by

P(Fq(∆)
∣∣X, I) =

1√
2π Σq

exp

{
−
[〈

µ̄q(t) µ̄∗q (t)
〉

t −Fq(∆)
]2

2Σ2
q (∆)

}
(S.3.4)

where I implicitly includes a knowledge of both the expected size of the uncertainties {Σq(∆)}, and a

suitable model of the functional relationship between the parameters X and the ideal (noiseless) data

given by
〈
µ̄q(t) µ̄∗q (t)

〉
t – see Eq. (S.2.38). As a result, the posterior for X given the dataset F∆ is found

to be

P(X |F∆, I) ∝ exp
(
− χ2

∆

2

) qmax

∏
q=qmin

1√
2π Σq(∆)

, (S.3.5)

using Eqs. (S.3.1 – S.3.5). This shows that the maximum of the posterior occurs when χ2
∆

is smallest; the

corresponding optimal solution X0 can be obtained by minimizing the weighted least-squares function

(S.3.1) with respect to each parameter in X.

To obtain a measure of reliability for the best estimate X0, we need to study the spread of the posterior

probability about the point X0. Using a Taylor series expansion, the local behaviour of χ2
∆

takes the form

(up to second-order):

χ
2
∆
= χ

2
min +

1
2
(X−X0) Hmin (X−X0)

T + O
[
(X−X0)

3
]
, (S.3.6)

where χ2
min = χ2

∆
(X = X0), and Hmin is the Hessian matrix H of (S.3.1) evaluated at the best-fit parame-

ters [13]. This allows us to compute the covariance matrix C of the posterior, which is formally defined

to be the expectation value of the square-like deviations from the mean (that is, a multivariate case of the

variance for a single variable), namely

[C]i j =
∫

DX (Xi−X0,i)(X j−X0, j) P(X |F∆, I) , (S.3.7)

where
{

X j
}

and
{

X0, j
}

are the associated components of the vectors X and X0, respectively, and the

measure DX := ∏` dX`. The associated error-bar with respect to X` is therefore given by the square root

of [C]``. Using Eqs. (S.3.5) and (S.3.6), we find that C =−H−1
min [13].

We return to the question of what values we should consider for qmin and qmax. This is yet again

another application of Bayes’ theorem (a model selection problem, see [13]). For simplicity, the lower

bound of the fitting range is taken to be a constant throughout this study; specifically, we choose qmin = 3,

because the second mode can be affected by imaging artefacts, e.g. a slight asymmetry between the

longitudinal an vertical pixel size. The optimal choice for the upper bound is one that maximises its

posterior probability in the view of the dataset F∆. Using the Bayes’ theorem and the usual rules of
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Figure S.6. The logarithm of the posterior probability for the upper bound qmax given the data (namely,
the spectrum shown in Figure 2 of the Letter), which is scaled by its maximum (here, the optimal value
is given by qmax = 13). A straight line interpolation is used between the points.

probability theory [13], it can be shown that

P(qmax |F∆, I) ∝

∫
DX P(X |F∆, I) (S.3.8)

where the prior probabilities are assumed to be uniform, and all terms independent of qmax are absorbed

into the (omitted) normalisation constant of Eq. (S.3.8). For measurements on a single vesicle, the

posterior probability in Eq. (S.3.8), together with Eq. (S.3.5), yields

P(qmax |F∆, I) ∝

∫∫
dκ dσ̄ exp

[
−1

2
χ

2
∆
(κ, σ̄)

] qmax

∏
q=qmin

1√
2π Σq

, (S.3.9)

since we simply have X = (κ, σ̄). Here, this double integral can be carried out numerically over some

adequately chosen domain of integration. Alternatively, we can make further analytical progress by

assuming that the form of χ2
∆

can be reasonably approximated by the second-order expansion about the

optimal estimate X0 = (κ0, σ̄0), as given in Eq. (S.3.6). Consequently, the integral over exp
(
−χ2

∆
/2
)

equals to the value of exp
(
−χ2

min/2
)

times the integral over a two-dimensional Gaussian:

∫∫
dκ dσ̄ exp

[
−1

4

(
κ−κ0, σ̄ − σ̄0

)
Hmin

(
κ−κ0

σ̄ − σ̄0

)]
=

4π√
det
(

Hmin
) , (S.3.10)

where det
(

Hmin
)

is the determinant of the Hessian matrix evaluated at X0 = (κ0, σ̄0).

This analytical result is used to select the optimal value of qmax (see Fig. S.6). In addition, we

impose that qmax needs to be greater than the value of the crossover mode qc = R/ξ =
√

σ̄ , where

ξ =
√

κ/σ is the membrane correlation length, and the final equality holds as the mean spontaneous

curvature H0 = 0 in our experiments. This crossover mode separates the regimes in which the membrane
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is mainly dominated by the surface tension term (when q . qc) and the bending rigidity term (when

q & qc). Since the fluctuation spectrum in these limits is characterised by different functional forms (e.g.

in the usual Monge-like case [6], we find the power-laws q−2 and q−4 if the modes q . qc and q & qc,

respectively), this crossover is required to lie within the fitting range, leading therefore to the condition

that qmin < qc < qmax. At the same time, the value of qmax must be smaller than the cutoffs related to

the temporal and spatial resolution of our microscope. The former is defined by qw = R/W , where W

is the Gaussian width of the lateral point spread function. The values of this cutoff in our experiments

are typically larger than the mode number q = 30. On the other hand, the temporal cutoff is defined (as

mentioned in the main text) by the value of Q that satisfies 1
2 τQ = 2πR/(vQ), where v is the effective

velocity of the line scanning front, perpendicular to the scan direction. Therefore, qmax needs to be less

than Q which typically has values greater than q = 18 in our experiments. Since qc and Q depend on

the inferred values of κ and σ̄ , the constraints on the value of qmax ∈ (qc, min(qw,Q)] are, in practice,

checked a posteriori after a brute-force computation of P(qmax |F∆, I) is obtained for a large range of

values (from 5 to 40); see the Mathematica (Wolfram Research, Inc.) code in DataAnalysis.nb file of

the Supplementary Material.

The same procedure of maximizing the posterior probability in Eq. (S.3.5) can be carried out for

datasets D that may include many other spectra measured on the same vesicle at different focal depths,

or spectra obtained from distinct vesicles of the same lipid composition (that is, same value of κ), or

both. Since every experimental datum Fq(∆) is assumed to be completely independent of each other, this

implies that the posterior probability over the entire data D is given by a product of Eq. (S.3.5) over the

different focal depths or different GUVs, or a mixture of the two, namely

P(X |D , I) ∝ ∏
`,∆

exp
[
− χ2

∆
(κ, σ̄`)

2

] qmax

∏
q=qmin

1√
2π Σq(∆)

, (S.3.11)

where we omit, for brevity, the explicit dependence of both Σq and qmax on ` that labels the different

vesicles. The value of the upper bound qmax is computed as before by the maximum of the posterior

probability in Eq (S.3.9) for each individual spectra associated with (`, ∆).
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[6] Pécréaux, J., Döbereiner, H. G., Prost, J., Joanny, J. F. & Bassereau, P. Refined contour analysis of

giant unilamellar vesicles. Eur. Phys. J. E 13, 277–290 (2004).

[7] Yoon, Y.-Z. et al. Flickering analysis of erythrocyte mechanical properties: dependence on oxy-

genation level, cell shape, and hydration level. Biophys. J. 97, 1606–15 (2009).
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