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ESI, Figure. S1: General scheme of the experiments
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Fig. S1 General scheme of the experiments. The four groups of experiments explicit what are the

measurements realized on the same rod, or on the same bulk sample (hexagons). Some variables (red

round circles) are directly deduced by some measurements (squared boxes) or from a combination of

them.
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ESI, Figure S2: Magnetization curves of the rod nanoparticles
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Fig. S2 Magnetization curves of the nanoparticles used to prepare the rods. The magnetization

curves M(H) were obtained by vibrating sample magnetometry on a 3.9% volume fraction ferrofluid

suspension of non-aggregated citrated particles. At this low concentration, the magnetic interaction

between the particles is negligible and thus, no demagnetizing field takes place. Data have been

extrapolated as if the solution volume fraction were 100%. The main figure is a portion of the

magnetization cycle (the full cycle is shown in the grey inset) for the low values of the field at which

the flexural experiments were performed. Green: field is increased, Red: field is decreased (refer to

the left-axis for the scale). The slight shift between the increasing and decreasing curves ascribes to

a known thermal drift of the Hall probe gaussmeter used to measure the magnetic induction, and not

for a remanent magnetization: the surperparamagnetism of such a suspension being well known 1.

Blue data: the magnetic susceptibility χv = M
H

deduced from the magnetization values (scale on the

right axis) varies considerably, in particular for a low induction field.

1W. C. Elmore, The Magnetization of Ferromagnetic Colloids, Phys. Rev., 1938, 54(12), 1092–1095.
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ESI, note 1: Optical and Atomic Force Microscopy measures of the rod radius

Much attention is necessary for the precise measurement of the radius r, on which depends the

further determination of other parameters such as the Young modulus Y (Y = 4
Π
r−4C for cylindrical

rods 2), the magnetic susceptibility χ ∝ C.r−2 (ESI†, note 2), and hence the particle volume fraction

φ ∝ χ. We therefore searched for a precise direct determination of the radius of individual rods.

Unfortunately, the typical diameter size (200-800 nm) was in the order of the Abbe’s resolution limit

ρ = 0.61λ
NA
∼250 nm (NA is the numerical aperture of the objective and λ the wave length). We

thus developed a method to measure the rod radius inspired by the measurement of the length of

sub-micron large bacteria by fluorescent microscopy 3 and driven by the assumption that in reflection

microscopy, individual nanoparticles of the rod behave as individual point sources, like fluorescent

particles in biological samples. We neglected the possible interference between them as ascribed

from weak coherence of the light source. We also adopted the simple viewpoint where each diffuser

reemits light with the same intensity. With the further hypothesis that at a given cross-section the

nanoparticle concentration is homogeneous, the back scattered light intensity is simply dictated by

the geometry and should be proportional to 2r1

√
1− (x

r
)2, where x denotes for the abscissa along

the orthogonal axis to the rod, r the radius in the transverse direction of the optical axis and r1

the radius along the optical axis (r1 6= r for an elliptic cross-section). In this view, the reflected

light is therefore the point spread function of the microscope convoluted by the emitted light and

should be: Ir(x) = I0(r)
∫ r
−r J1 [a(s− x)2] 2r1

√
1− ( s

r
)2ds where J1 is the Bessel function of the

first kind and a = 2πNA
λ

. A common simplification consists in replacing J1 by a Gaussian law with

standard deviation σxy = .21 λ
NA

. 4 To test this model, we thus compared the expected intensity

Ir(x) = I0 + I1

∫ r
−r exp

[
− (s−x−x0))2

2σxy2

]
2r
√

1− ( s
r
)2ds with many measures of grey intensity profiles

from reflection images of the various rods (Fig. 1C and ESI†, S2). I0, I1, x0 and r where adjustable

parameters. In all cases, the theoretical curve fitted well the measured curves. We could thus au-

tomatize the procedure to probe the rod along its entire length (every two pixels=91 nm, ESI†, Fig.

S3).

2L. D. Landau and E. M. Lifshitz, Theory of Elasticity, Pergamon press, Oxford, 2nd edn, 1970.
3B. Zhang and J. Enninga, Automated super-resolution detection of fluorescent rods in 2D. Biomedical Imaging:

Nano to Macro, 2006. 3rd IEEE International Symposium on, 2006, pp.1–4.
4D. Thomann, D. R. Rines, P. K. Sorger and G. Danuser, Automatic fluorescent tag detection in 3D with super-

resolution: Application to the analysis of chromosome movement, J. Microsc., 2002, 208(1), 49–64.
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To check the accuracy of these optical measures, we compared them with measures obtained

by an AFM scan performed on the same optically analyzed rod. The AFM used was a MFP-3D-BIO

from Azylum Research, mounted on an inverted Olympus optical microscope. The AFM cantilevers

were OMCL AC160TS R3 probes from Olympus with nominal stiffness of 26 N/m, nominal tip height

of 14 µm, and nominal tip radius of 7 nm. The resonance frequency was 271 kHz and the scan rate

was 1 Hz. The imaging was performed in the soft tapping regime. The images were acquired with

lateral sizes ranging from 5 to 20 µm. To measure the radius by analysis of the optical images, we

used the same equipment as for the rest of the experiments (camera, objective and beam splitter).

To avoid the difficulties of AFM on water immersed samples, we partially allowed the sample to dry

before the scan. It is clear that the procedure somewhat damaged the rods (as shown by images taken

before, during and after rehydratation) but we found that a greater variability of the rod cross-section

was actually more suitable than homogeneous rods to compare both radius measurement methods.

After AFM analysis, the samples were gently rehydrated with a pipette, without moving the sample

from the microscope stage. Images taken before and after the procedure showed that no observable

modification occurred during the procedure. The AFM scans were done in tapping mode in the soft

tapping regime from which we derived the height and radius of the rod profiles from the AFM scans

(ESI†, Fig. S3) taking into account the geometry of the tips. The height was found to be smaller

than the width diameter, indicating that their lower surface may have flattened on the coverslip

while drying. In all cases, we found that the variation of the height and the width were strongly

correlated. The model for the optical analysis also holds for elliptic cross-section (or half-cut elliptic

section) through the adjustment of the fit variable I1.

We performed this analysis respectively on 15 rods made from the 13 nm (and also 8 nm) average

diameter nanoparticle fractions. The graphs of ESI†, Fig. S3 show the strong similitude between the

profiles from the two methods for three rods. However, we find that rather than being stochastic,

the sign of the difference between the two curves is persistent over micron-long distances. Our

interpretation is that, given the low number of particles (see Table 1 and Fig. 3), the AFM tip

scans the polymer hairy shell whereas the optical method accounts for the presence of the inorganic

nanoparticles. The AFM precision could thus be affected by the presence of sticky blobs of polymer

or nanoparticles onto the tip, or the presence of a heterogeneous water layer around the rod. Despite

these differences, we found that the mean difference (averaged over the rod length) between AFM and

optical measures were respectively 1.5, 1.9 and 12 nm and that the standard deviation was ranging
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from 20 to 30 nm. This latter value of 30 nm also appeared to be the typical standard deviation of

the optical radius measured along a water-immersed rod and was retained to be the uncertainty of

our optical measurement.
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ESI, Figure S3: Optical and AFR measurements of the rod radius
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Fig. S3 Comparison of rod radius measurement by AFM and optical reflection image analysis for

three different rods. A1-A3 grey intensity map of the height measured by AFM. For each panel,

the inset shows the reflection optical image of the same rod after the sample has been rehydrated

(bars=2 µm). B1-B3 each panel corresponds to the A images and shows the AFM-measured height

(black line), the AFM-measured radius deduced from the width (blue line), the radius derived from

the optical analysis (red line) and the absolute difference between the blue and red measures (green

line). For each curve the sampling was every 2 camera pixels=93 nm.

6



ESI, note 2: Theory of the magnetoelastic experiments

In this section, we detail the theoretical model used to deduce the magnetic susceptibly χ from

the magnetoelastic bending of a cantilevered rod submitted to a uniform external field ~B0 = µ0
~H0

(µ0 is the vacuum permeability). As described in the main text, we assume that the rod geometrical

parameters - the radius r, the length L, and the deflection δ of the rod tip - as well as its bending

modulus C are known from independent measurements. As shown on (Fig. 2A), we note ~H the

field inside the rod and ~M its magnetization. The symbols ‖ and ⊥ applied to any vector ( ~M ,

~B0, ~H...) denote respectively their longitudinal and orthogonal projections on the rod. In absence

of remanent field (the rods are superparamagnetic), the bulk rod material is characterized by a

magnetic susceptibility which is defined as χ(H) = M
H
. We assume the material to be homogeneous

and isotropic. In the absence of magnetic dipolar interaction between the nanoparticles 5, we also

have χ(H) = φ
φv
χv(H) where φ and φv are respectively the volume fractions of the particles in the

rod and in the ferrofluid of the same nanoparticles on which the measurement of χv was performed

by vibrating sample magnetometry (VSM).

We first consider a non-deformable paramagnetic rod of size L and radius r, submitted to ~B0

oriented at an angle α = π
2
− θ with respect to the rod main axis (Fig. 2A). When L � r, the

rod may be approximated by an infinite cylinder. In our case in which the medium is uniform and

isotropic, the demagnetizing factors of the main (n‖ = 0) and transverse (n⊥ = 1/2) axis are easily

computed 6. Using H‖(⊥) = H0‖(⊥)−n‖(⊥)M‖(⊥) andM‖(⊥) = χ(H‖(⊥))H‖(⊥) from the above definition

of the magnetic susceptibility, we deduce for each direction the effective susceptibilities defined as:

M‖(⊥) = χ‖(⊥)H0‖(⊥) and which are: χ‖ = χ(H0‖) and χ⊥ = χ(H⊥)
1+χ(H⊥)/2

.

In these conditions, each section of the cylinder is submitted to a magnetic torque per unit

volume ~Γm = ~M ∧ ~B0. The contributions from the ‖ and ⊥ components yield its algebraic amplitude:

Γm = Γm‖ + Γm⊥ = ∆χ sin(2α)
πr2B2

0

2µ0

(1)

5F. Gazeau, E. Dubois, J. C. Bacri, F. Boue, A. Cebers and R. Perzynski, Anisotropy of the structure factor of
magnetic fluids under a field probed by small-angle neutron scattering, Phys. Rev. E: Stat., Nonlinear, Soft Matter
Phys., 2002, 65(3), 1–15.

6This result is obtained from symmetry considerations and the constraint that the sum of all each-axis demagnetizing
factors equals unity. See : Osborn, Demagnetizing factors of the General ellipsoid, Phys. Rev., 1945, 11 and 12, 351.
For L/r ∼ 100, as in the experiments, the infinite cylinder is an excellent approximation with a relative error of
∼ 7× 10−3 (see ref. 8).
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where

∆χ = χ(H‖)−
χ(H⊥)

1 + χ(H⊥)/2
(2)

depends on both components of the internal magnetic field.

Secondly, we now assume that the cylinder is a Hookean deformable solid of Young modulus Y

and bending modulus C = π
4
r4Y . According to classical elasticity equations 7, the restoring torque

per unit length of a bent cylinder is Γb = C d2θ
dl2

. The local torque balance equation (which may be

obtained through minimization of the energy functional even when χ depends on H 8) is therefore:

C
d2θ(l)

dl2
+ πr2 ∆χB2

0

2µ0

sin [2θ(l)] = 0 (3)

where l designates the curvilinear abscissa along the rod and θ the angle with respect to the orthogonal

direction to the field (see Fig. 2A). However, this equation relies on the supporting hypothesis of

equation (1) which holds for a single straight rod, not for a deformed cylinder that changes direction

(i.e. bends) relatively to the external field. It remains approximatively valid 9 if each section of

the rod magnetically responds to the external field independently of what happens in the rest of

the rod. We thus designate it as the "independent model". We recently introduced an alternative

so-called "axial model" 10, in which we hypothesized that for large χ the magnetization is mostly

longitudinal and also approximatively constant along the rod main axis. In the same paper, using the

dipolar approximation, we discussed of the validity of each model and showed that the "independent

model" is actually true when χ 6 2 because with this low susceptibility, the main contribution to the

internal field ~H in any direction is the external field rather than the magnetic self-induction of the

rod. Thanks to the demagnetizing field, this is also true in the transverse direction whatever the value

of χ > 0. But in the axial direction, quite the contrary happens when χ > 2: each cross-section of

the rod is influenced by both the close and distant magnetized parts of the rod. As a conclusion, our

experiments demonstrated that the "axial model" describes more accurately the shape of nickel wires

with χ > 100 and also of microrods described here, although χ ∼ 2 11. It also better predicted the

threshold of the field intensity at which the rod buckles. The constant axial part of the magnetization
7L. D. Landau and E. M. Lifshitz, Theory of Elasticity, Pergamon press, Oxford, 2nd edn, 1970.
8F. Gerbal, Y. Wang, F. Lyonnet, J. Bacri, T. Hocquet and M. Devaud, A refined theory of magnetoelastic buckling

matches experiments with ferromagnetic and superparamagnetic rods, Proc. Natl. Acad. Sci. U. S. A., 2015, 112(23),
7135–7140.

9The bent rod can be approximated by several contiguous ellipsoids.
10See ref. 8.
11See ref. 8.
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is determined by the part of the rod which is the most influenced by the external field,i.e. the section

most aligned with the external field. In the cantilevered configuration studied here, this is thus the

tip of the rod. Using H‖ = H0‖ (the demagnetizing factor is assumed to be null along the rod main

axis as in the infinite cylinder), this writes M‖ = χ(H‖)H‖ = χ(H‖) sin [θ(L)]H0. We also neglected

Γm⊥ in front of Γm‖ because mathematically ∀χ, χ⊥ < 2 when n⊥ = 1/2. With these conditions the

"independent model" described by equation (3) is replaced by:

C
d2θ(l)

dl2
+ πr2M‖B0 cos [θ(l)] = 0 (4)

This "axial model" also presents a very convenient advantage: with the constancy of M = M‖,

follows the constancy of H and χ (see below). But for an accurate measure of χ we improve for

this paper the "axial model" to take into account Γ⊥ which may account for∼ 40% of Γm when χ

is low. If neglected, the experiments described in the main text done for variable field strength and

directions (Fig. 2) does not yield constant φ. Since ~H⊥ always follows the "independence rule", the

expression of Γm⊥ in equation (1) is valid and the torque balance of the complemented axial model

becomes:

C
d2θ(l)

dl2
+

{
χ(H‖) sin(θL)− χ(H⊥)

1 + χ(H⊥)/2
sin [θ(l)]

}
cos [θ(l)]

πr2B2
0

µ0

= 0 (5)

Without the assumption that χ(H) is constant, neither equation (3), nor (5) may be integrated.

To circumvent these difficulties we performed very small deformation measurements (deflection δ ∼

L/50 ∼ 1 µm) in order to keep almost constant the orientation of the rod with respect to the field.

In this condition, we approximate in equation (5): sin [θ(l)] ' sin [θ(L)]. 12 This also allowed to

consider H⊥ as constant in the rod, and thus also χ(H⊥) (Fig. S4). With these approximations,

equation (5) may be integrated and yields the shape of the rod:

x(l) = 2λ

{√
1− sin(θ0)

sin(θL)
)−

√
1− sin [θ(l)]

sin(θL)

}
(6)

12sin [θ(l)] ' sin [θ(L)] + cos(θL)(θ(l) − θL). With θL − θ0 . 3◦ � θ0 = 55◦ (see further), the approximation is
better than 4%. Alternatively, replacing sin [θ(L)] by sin [θ(l)] yields the equation of the independent model (Eq. (3)).
Indeed, with a small deformation, the infinite straight cylinder model holds to compute the internal magnetization.
Thus, analytical integration of equation (3) is feasible and yields somewhat different expressions which are: x(l) =

κ

[
arcsin( sin θ(l)

sin θL
) − arcsin( sin θ0

sin θL
)

]
, y(l) = κ

[
arccosh( cos θ0

cos θL
) − arccosh( cos θ(l)

cos θL
)

]
and L = κ

∫ θL
θ0

dθ′√
sin2 θL−sin2 θ′

with

κ =
√

µ0C
πr2∆χB2

0
. Although this model does not match the rod shape as well as the "axial model", they are very similar

for small deflections. In this case, both models yield similar values for the volume fraction φ.
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y(l) = λ

∫ θ(l)

θ0

sin(θ)dθ√
1− sin(θ)

sin(θL)

(7)

with λ =
√

µ0C
2πr2∆χB2

0
. From equations (6) and (7), we deduce the relation between L and θL:

L = λ

∫ θL

θ0

dθ√
1− sin(θ)

sin(θL)

(8)

as well as the deflection of the tip:

δ = − sin(θ0)x(L) + cos(θ0)y(L) (9)

From the experimental measurements of L and δ, we numerically solved equations (8) and (9) to

find θL and λ from which follows ∆χ. Equation (8) always admits a solution for θL > θ0 > 0. But

in the case θ0 = 0, a solution exists only if L > 2λ. This is the mathematical translation of the

magnetoelastic buckling instability which occurs at the critical field Bc = 1
rL

√
2µ0C
π∆χ
' 1

rL

√
2µ0C

πχ(H0‖L )

in the axial model 13.

From ∆χ and the geometrical parameters, one can compute χ(H‖) and χ(H⊥), each of them

being proportional to the magnetic susceptibility of the nanoparticles which compose the rods, i.e.

χ(H‖(⊥)) = φ
φv
χv(H‖(⊥)). Using the expression of ∆χ and the data χv(H), φ could thus be obtained

by solving numerically the set of equations:

H‖ = H0‖ H⊥ =
H0⊥

1 + φ
φv
χv(H⊥)/2

(10)

φ = φv
∆χ

χv(H0‖)− χv(H⊥) H⊥
H0⊥

(11)

based on these latter equations, Fig. S4 shows the variation of the magnetic susceptibilities

in a infinitely-long cylinder as a function of the field components, which depends themselves on the

induction field angle with respect to the cylinder.
13See ref. 8.
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ESI, Figure S4:

Rod magnetic susceptibilities as a function of the incidence angle of the field
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Fig. S4 Rod magnetic susceptibilities as a function of the incidence angle of the field. Computation

of the magnetic susceptibilities of an infinitely long rod (with a particle volume fraction φv=15%) as

a function of its orientation α in respect with the external induction field B0 = 5 mT (see inset). The

various susceptibilities are numerically computed from equations (10) and (11) and after the VSM

data χv(H). H‖ and H⊥ are respectively the axial and orthogonal components of the magnetic field

inside the rod, ∆χ = χ(H‖) − χ⊥(H⊥) with χ⊥ = χ
1+χ/2

. Interestingly, ∆χ varies dramatically by

almost a factor of 5 when α is rotated by 90◦ but varies by less than 10% for α between 0 and 20◦.
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ESI, Fig. S5: Elastic and plastic deformations of the rods

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20 25 30
sequence number

 ti
p 

de
fle

ct
io

n 
δ 

(μ
m

)

0 500 1000 1500
Time (s)

0.5

1

1.5

2

2.5

3

 ti
p 

de
fle

ct
io

n 
δ 

(μ
m

) BA

A: deflection distance δ of a 44.6 µm long cantilever rod during a typical sequence of magnetic mea-

surements with an applied induction field. The field is alternatively turned on for 700 ms (including

200 ms of camera acquisition) and off (for the same time) to check its elastic return to its undeformed

state. The field is always applied at 35◦, at increasing strength (3.26, 5.59 and 7.61 mT) and 5 times

for each strength to test the reproducibility and average out the variations of the deflected amplitude

due to thermal fluctuations. B: by contrast, a strong induction field (33.7 mT) applied for a long

time yields large non-elastic deformations. The arrow indicates the time at which the field is turned

off. The recording has been stopped but the rod does not return to the initial state (δ = 0) even

after hours.

ESI, Movie 1: automatic recognition of the deflected rod centerline by the image

recognition software

Movie made of 31 time-laps reflection images of a 53 µm long rod deflected by an increasing

magnetic field successively turned on and off according to the experimental procedure shown on ESI†,

Fig. S5. Lower left bar=10 µm. The direction of the field is indicated by the upper right arrow

(θ0 = 35◦) and its intensity written on the movie. The dark line drawn on the middle of the rod

image is its centerline automatically digitized by our software.
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