Supporting Information

Normal stresses in shear thickening granular suspensions

Zhongcheng Pan*, Henri de Cagny, Mehdi Habibi, and Daniel Bonn

Soft matter group, Van der Waals-Zeeman Institute, IoP, Science Park 904, Amsterdam, the Netherlands

Fig. S1 Storage modulus *G*' and loss modulus *G*'' as a function of strain amplitude γ_0 in oscillatory strain sweep measurement. The suspension volume fraction is $\varphi = 56\%$ with particle diameter $d = 40 \ \mu m$, and the gap size is fixed at $h = 1 \ mm$. For this measurement, the angular frequency is fixed at $\omega = 6.28 \ Hz$ while the strain amplitude γ_0 is varied from 0.0001 to 100.

Fig. S2 Normal force F_N as a function of shear rate $\dot{\gamma}$ upon increasing the shear rate (filled symbols) and decreasing the shear rate (open symbols). The suspension volume fraction is $\varphi = 56\%$ with particle diameter $d = 40 \ \mu m$. The gap is fixed at $h = 0.5 \ mm$.

d (µm)	<i>h</i> (mm)	A	В
	1.5	-0.042	0.004
10	1	-0.499	0.008
	0.5	-0.413	0.024
	1.5	-0.413 -0.499 -0.413 -0.499 -1.647 1.267	0.061
40	1		0.085
	0.5	1.267	0.087

 Table S1. The parameters A and B corresponding to Eqn. (2) and Eqn. (3), respectively.

Table S2. The parameters ${\rm A}_2$ and $\tilde{A}~$ obtained from fitting Eqn. (1) to the normal stress data in Fig. 3.

d (µm)	<i>h</i> (mm)	A ₂	Ã
10	1.5	-14	671
	1	-6	27
	0.5	-2	17
40	1.5	-1.6	8
	1	-1	1
	0.5	2	0.2

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 20xx