Adhesion and Friction in Polymer Films on Solid Substrates: Conformal Sites Analysis and Corresponding Surface Measurements

Rong An,^{a, b} Liangliang Huang,^c Kenneth P. Mineart,^{b, †} Yihui Dong,^d Richard J. Spontak,^{b, e} and Keith E. Gubbins^{*,b}

^a Herbert Gleiter Institute of Nanoscience, Nanjing University of Science & Technology, Nanjing 210094, P.R. China

^b Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA. Corresponding Author: Keith E. Gubbins,* Phone: 919-513-2262. Fax: 919-515-3465. E-mail: keg@ncsu.edu.

^c School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA

^d State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P.R. China

^e Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA

+ Present Address: Materials Science & Engineering Division, National Institute of Standards & Technology, Gaithersburg, MD 20899, USA

Fig. S1 Schematic diagram showing the basic operating principle of Nano-TA and a representative deflection curve for a PS film (thickness = 340 nm) on a silica surface.

Fig. S2 Polymer structures and bead center locations chosen for $poly(\alpha$ -methylstyrene) (PAMS).

Table S1.	Site mole fr	actions and	potential e	energy param	eters ¹ for PA	MS with	<i>M_w</i> =450 k	Da
(OPLS for	ce field)							

PAMS	$\varepsilon_{v}/k_{\mathrm{B}}(\mathrm{K})$	X _v	$\sigma_{ m v}$ (nm)
CH ₃ (sp ³) ²	88.1	0.0004	0.390
CH ₂ (sp ³) ²	59.4	0.071	0.390
C (aliphatic) ³	33.2	0.071	0.350
C (aromatic) ³	35.2	0.071	0.355
H (aromatic) ³	17.4	0.357	0.242
C (aromatic link) ³	38.3	0.357	0.355

ΡΜΜΑ	$arepsilon_{ u}/k_{ m B}$ (K)	Χ _ν	σ_{v} (nm)
CH ₃ (sp ³) ²	88.1	0.143	0.390
CH ₂ (sp ³) ²	59.4	0.143	0.390
C (sp ³) ³	33.2	0.143	0.350
C (carbonyl) ³	52.8	0.143	0.375
O (carbonyl) ³	106	0.143	0.296
O (ether) ⁶	85.6	0.143	0.300
CH₃ (ether)²	85.6	0.143	0.380

Table S2. Site mole fractions and potential energy parameters^{4, 5} for PMMA with $M_w \approx 100$ kDa (OPLS force field)

Table S3. The structural parameters of Au^{7, 8} and silica surfaces,⁹ and parameters for the reference system to calculate wetting parameters for PMMA-Au and PAMS-silica systems

		silica	Au
	$ ho_s$ (nm ⁻³)	44.2	0.59
	Δ _s (nm)	0.220	0.288
	σ_{ss} (nm)	0.270	0.257
	$\varepsilon_{ss}/k_{ m B}$ (K)	230	5310
ΡΝΛΙΜΔ	$\varepsilon_{xs}/k_{\rm B}$ (K)	/	607
	σ_{xs} (nm)	/	0.308

	$\varepsilon_x/k_{\rm B}({\rm K})$		69.6	
	σ_x (nm)		0.356	
	α _{wx}	/		0.141
	$\varepsilon_{xs}/k_{\rm B}$ (K)	86.3		/
	σ_{xs} (nm)	0.287		/
PAMS	$\varepsilon_x/k_{\rm B}$ (K)		32.1	
	σ_x (nm)		0.304	
	α _{wx}	0.051		/

References

- 1 V. A. Harmandaris, N. P. Adhikari, N. F. A. van der Vegt and K. Kremer, *Macromolecules*, 2006, **39**, 6708-6719.
- 2 J. M. Briggs, T. Matsui and W. L. Jorgensen, J. Comput. Chem., 1990, **11**, 958-971.
- 3 W. L. Jorgensen, D. S. Maxwell and J. Tirado-Rives, J. Am. Chem. Soc., 1996, **118**, 11225-11236.
- 4 Y. G. Yingling and B. J. Garrison, J. Phys. Chem. B., 2005, **109**, 16482-16489.
- 5 C. Chen, Ph.D. Thesis, The Pennsylvania State University, 2006.
- 6 M. L. P. Price, D. Ostrovsky and W. L. Jorgensen, J. Comput. Chem., 2001, 22, 1340-1352.
- 7 P. M. Agrawal, B. M. Rice and D. L. Thompson, *Surf. Sci.*, 2002, **515**, 21-35.
- 8 B. Westenfelder, J. Biskupek, J. C. Meyer, S. Kurasch, X. H. Lin, F. Scholz, A. Gross and U. Kaiser, *Sci. Rep.*, 2015, **5**.
- 9 R. Radhakrishnan, K. E. Gubbins and M. Sliwinska-Bartkowiak, J. Chem. Phys., 2000, **112**, 11048-11057.