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Stretching of surface-tethered polymers in pressure-driven flow under
confinement
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1 Simulation details

We used a mesoscopic simulation approach by combining a
coarse-grained polymer model with a lattice-Boltzmann fluid.
The coarse-grained MD simulations were performed with
ESPResSo using a simple bead-spring model. Inter-bead in-
teractions were modeled with Weeks-Chandler-Andersen po-
tential and adjacent beads were connected by a finitely exten-
sible nonlinear elastic bond potential. Although not contain-
ing charges, this model resembles a polyelectrolyte in aquous
solution containing salt (e.g. double-stranded DNA molecules
in buffer solution with high concentration of salt) reasonably
well. Single beads in coarse-grained models usually repre-
sent the individual persistence lengths within a polymer1. For
λ -DNA, a persistence length of (42± 5)nm was found2, re-
sulting in a bead diameter b ≈ 42 nm. Electrostatic interac-
tions in aqueous solution usually decay on a scale between
λB =0.7nm, where λB is the Bjerrum length3, and several
nanometers for low concentrated salt solutions. The electro-
static screening length can be expressed in terms of the Bjer-
rum length λB

λD =
1√

4πλB ∑i ciz2
i

, (1)

with ci, zi being the concentration and valency of charged
species i. Eq. (1) shows that the length scale on which electro-
static interactions decay are much smaller than the persistence
length for the experimentally employed parameter set such
that electrostatic interactions can be neglected if we are only
interested in the scaling behaviour of the polymer we want to
model.

Hydrodynamic interactions were included by coupling the
beads to a thermalized lattice-Boltzmann (LB) fluid. The grid
spacing of the LB fluid in a D3Q19 arrangement is a = b. The
coupling between the LB fluid and the MD beads is achieved
by the standard scheme4 according to

~Fc (~r) = Γ(~vm (~r)−~u(~r)) , (2)

where ~Fc is the coupling force on a bead, Γ = 20m0/t the bare
coupling constant, and~vm and~u are the velocities of the beads

a Institute for Nano- and Microfluidics, Technische Universität Darmstadt,
Darmstadt, Germany. Fax: +49 6151 16-24278; Tel: +49 6151 16-24274;
E-mail: hardt@nmf.tu-darmstadt.de
b Institut für Computerphysik, Universität Stuttgart, Stuttgart, Germany.

and the fluid, respectively. The fluid velocity is calculated
by a linear interpolation on the eight nearest neighbors. An
equal and opposite force is applied to the fluid using the same
weights used for the linear interpolation of the fluid veloc-
ity. For the lattice-Boltzmann simulations, the fluid and the
coupling with the MD beads are thermalized using a lattice-
Boltzmann thermostat such that T = ε = kBT , where ε is the
energetic prefactor. The time step for both the lattice- Boltz-
mann fluid and the MD integration is set to ∆t = 0.01t,where
t is the time scale used for the fluid properties. Two infinitely
long plates at ±zB with varying plate distances H represent
the physical boundaries of the microchannel. The plates inter-
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Fig. 1 Schematic drawing of a polymer (black spheres) tethered to a
channel wall (gray area) under the influence of a planar Poisuille
flow (blue grid).

act via the same WCA potential as described above with the
polymer beads and via bounce-back interactions to implement
no-slip boundaries with the fluid5. We fixed the first bead at
−zB in order to model a tethered polymer. The equivalent of a
pressure gradient along the channel is accomplished by an ex-
ternal force density according to ∂ p/∂x = −ρ fx/m0 applied
onto the LB fluid nodes in x-direction, resulting in a parabolic
Poiseuille velocity profile. We study the influence of external
forces in the range between 0.01 and 1.0 1

bt2 . A schematic
illustration of our simulation setup is shown in figure 1.

2 Scaling of the fractional extension in the
strongly stretched conformation

According to the scaling argument presented by Ladoux and
Doyle 6 , the fractional extension of a surface-tethered polymer

chain, exposed to a linear shear flow, is given by 1− x
L ∼ γ̇

− 1
3

wall

1

Electronic Supplementary Material (ESI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2017



in the strong stretching limit, where x is the extension of the
chain, L is the contour length and γ̇wall is the wall shear rate.
If the viscosity of the buffer is constant, then γ̇wall can be re-
placed by the wall shear stress τwall . Figure 2a shows the ex-
perimentally determined scaling of the fractional extension of
λ -DNA molecules with the applied wall shear stress, assum-
ing the contour length L = 20.4µm. This value of the contour
length is determined from the staining ratio7 (1 dye molecule
per 5 base pairs) used in our experiment. The figure indicates
that the fractional extension of the tethered DNA molecules
in the strong stretching limit can be expressed by the Ladoux
and Doyle scaling. After having verified the validity of this
scaling in the strong stretching limit at different degrees of
confinement, we employed the scaling relationship to estimate
the contour length more accurately. The variation of the frac-
tional extension with the wall shear stress, based on the values
of the contour length determined that way, is shown in figure
2b.

3 Scaling of the fractional extension of λ -DNA
for small values of the wall shear stress

The fractional extension of surface-tetehered λ -DNA
molecules at small values of the wall shear stress is expressed
by the relation x

L ∼ τm
wall , where m is a scaling exponent. We

determined the value of m corresponding to different channel
heights by fitting the fractional extension data at small τ in
a double-logarithmic plot with a straight line. The resulting
values of of m are indicated in the legend of figure 3.

4 Angle of orientation of λ -DNA

In figure 4 the angle of orientation of surface-tethered λ -DNA
at different channel heights is plotted over the entire range
of the wall shear stress applied in our experiments. We also
include the plot of the angle of orientation in an effectively
unbounded situation, as described in the work of Lueth and
Shaqfeh 8 , to compare the variation of the orientation angle
under confinement to that in an unconfined situation.

5 Quantification of the data collapse

Let ∆e be the width of the error bar (indicating the standard
deviation) in fractional extension at a specific value of τwallL.
At the same value of τwallL, ∆v is the standard deviation of the
data set of fractional extension values corresponding to chains
of different contour length. We use the ratio ∆v

∆e as an indicator
for the collapsing of the different curves on a single master
curve. If ∆v

∆e → 0, the collapse is perfect.
The distribution of ∆v

∆e over the entire range of τwallL is
shown in the inset of figure 6a and b. The analysis shown
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Fig. 2 (a) Scaling of (1− x
L ) with τwall for λ -DNA assuming a

constant contour length of 20.4µm. The black straight line indicates
a slope of − 1

3 . (b) Plot of (1− x
L ) with τwall for λ -DNA using the

contour lengths determined from the scaling of Ladoux and Doyle 6 .
The black straight line indicates a slope of − 1

3 .

in figure 6a corresponds to figure 2b of the main article. We
note that in almost 40% of the cases, 0 < ∆v

∆e < 1, whereas in
almost 50% of the cases, 4 < ∆v

∆e < 12. This type of bimodal
distribution of the ratio ∆v

∆e indicates that the curves in figure
2b of the main article are slightly different, which we identify
as a weak effect of confinement.

The histogram in figure 6b shows the frequency of different
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Fig. 3 Fractional extension of λ -DNA as a function of wall shear
stress at different channel heights. The plot is shown in
double-logarithmic style, where the x

L ∼ τm
wall scaling expected at

small shear-stress values translates to a linear curve.
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Fig. 4 Angle of orientation of the surface tethered λ -DNA
molecules plotted against the wall shear stress in channels of
different heights.

values of ∆v
∆e , corresponding to figure 6 of the main article.

From the histogram, we see that values with 0 < ∆v
∆e < 1 have

a frequency of about 50%, while values with 0 < ∆v
∆e < 2 have

a frequency of about 75%. This indicates that the different
curves collapse on each other within the range defined by the
experimental error bars.
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Fig. 5 Schematic depicting the method of analyzing the collapse of
two curves on each other.

6 Post-processing of confocal microscopy im-
ages

Confocal microscopy images of surface-tetehred λ -DNA
molecules were captured with a resolution of 256×256 pixels
(0.25 µm/pixel) in the x− z plane and a resolution of 0.1 µm
in y-direction (see figure 7). We could not take images with
a higher resolution because of the increased time required to
scan a molecule. An increased scanning time increases the
probability of photo-induced breakage of the molecules. The
molecules were stretched in x-direction by application of a
pressure-driven flow. A side-view of a molecule (i.e. a view
parallel to the x−y plane) was rendered by averaging the pixel
intensities from different planes (parallel to the x− y plane)
over a slab of width ∆z slightly larger than the characteristic
width of the molecular fluctuations in z-direction. Process-
ing of the stacked images was done using a MATLAB script.
From the images of a fluctuating molecule, we can estimate
the average or most-probable angle of orientation α by the an-
gle between the tethering plane and a vector connecting the
tethering point and the farthest fluorescing point (as shown
in the inset of figure 5 of the main article). After rendering
the side-view images, these vectors were identified for each
molecule in a MATLAB image processing window by man-
ually locating the two points defining the corresponding vec-
tors.
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Fig. 6 Normalized histograms of the frequency of ∆v
∆e . The insets

show the distributions of ∆v
∆e over the entire range of τwallL. (a) Data

corresponding to figure 2b of the main article. (b) Data
corresponding to figure 6 of the main article.
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Fig. 7 Confocal microscopy image of a tethered λ -DNA molecule
in isometric view.
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