Continuous and discontinuous transitions between two types of capillary bridges on a beaded chain pulled out from a liquid.

Filip Dutka, Zbigniew Rozynek, and Marek Napiórkowski

Supplementary Movie Captions

Supplementary Movie 1. The process of pulling the chain of spheres with radius $R=2 \mathrm{~mm}$ out of the 10 cSt silicone oil with the vertical velocity $v=0.01 \mathrm{~mm} / \mathrm{s}$. The sphere-planar liquid surface bridge transforms into the sphere-sphere bridge continuously. The chain was assembled by gluing the spheres together. Section of the video frame ($700 \mathrm{px} x$ 620px) was used to measure the projected area S of the spheres and liquid onto a plane parallel to the z axis which was then used in making the inset in Fig. 6.

Supplementary Movie 2. The process of pulling the chain of spheres with radius $R=25 \mu \mathrm{~m}$ out of the 10 cSt silicone oil with the vertical velocity $v=0.01 \mathrm{~mm} / \mathrm{s}$. The sphere-planar liquid surface bridge transforms into the sphere-sphere bridge discontinuously. The chain was assembled by employing the alternating electric field. Section of the video frame ($300 \mathrm{px} \times 250 \mathrm{px}$) was used to measure the projected area S of the spheres and liquid onto a plane parallel to the z axis which was then used in making the inset in Fig. 6.

Supplementary Animation 1. The process of pulling the chain of spheres with radius $R=2 \mathrm{~mm}>\lambda / 2$, where the capillary length $\lambda=1.45 \mathrm{~mm}$. The sphere-planar liquid surface bridge transforms into the sphere-sphere bridge continuously. This animation is based on our theoretical analysis and corresponds to Supplementary Movie 1.

Supplementary Animation 2. The process of pulling the chain of spheres with radius $R=25 \mu \mathrm{~m}<\lambda / 2$, where the capillary length $\lambda=1.45 \mathrm{~mm}$. The sphere-planar liquid surface bridge transforms into the sphere-sphere bridge discontinuously. This animation is based on our theoretical analysis and corresponds to Supplementary Movie 2.

