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A Spectral Irradiance of the light source

The distribution of intensity for the high power LED light source used for curing is shown in Fig. 1.
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Figure 1 Wavelength distribution of the intensity for the LED light source used in this work.

B Strain rates as a function of measurements

We can determine the mechanical strain rate on the polymerizing material using the time-derivatives of the

measurements from the tensometer. There are three components of strain in this system: (1) chemical strain

εchem, (2) observed or total strain εobs which is observed shrinkage in the photocuring resin, and (3) thermal

strain ε therm which due to the heat produced from the polymerization reaction and background absorption from
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the curing light source.

Double bond conversion causes an isotropic unconstrained shrinkage in the resin, which we call chemical

shrinkage. This is due to the reduction in the effective molecular volume of each monomer due to the bond

formation. This shrinkage strain is different from the observed strain and is directly proportional to DC. Let

the maximum achievable degree of conversion for a composite be DCmax, and the corresponding volumetric

shrinkage strain on an unconstrained photocured polymer be εmax. Then the uniaxial shrinkage strain rate at

any intermediate time is

ε̇
chem(t) =

1
3

ε
max ḊC(t)

DCmax
(1)

The observed strain rate is

ε̇
obs(t) =

∆ḣ(t)
h

(2)

The thermal strain rate is

ε̇
therm(t) = α(DC(t))Ṫ (3)

In Eq. (3) we need the coefficient of thermal expansion (CTE) of the material, which is changing during

polymerization. We interpolate the thermal expansion coefficient α as

α(DC) = αM

(
1.0− DC

DCmax

)
+αP

DC
DCmax

(4)

where αM is the expansion coefficient of the monomers and αP is the same quantity for the polymer. For the

material studied, the values of αM and αP were taken as 11.4× 10−4 K−1 and 4.8× 10−4 K−1 1, respectively.

In this work we have interpolated the CTE linearly with DC. An alternative, and perhaps a more accurate

approach would be to interpolate using the mole fraction of unpolymerized monomers (or monomers that are

not connected to the network). Using the results of Appendix D, this would be a second order function of DC.

C High-frequency modulus

The high-frequency modulus of the liquid can be different from the modulus of the vitrified phase if there is a

significant change in ordering during the transformation. We use water as a case study. It is well-known that

water and ice have very different molecular organization. The high-frequency shear modulus of water is around

9GPa and the shear modulus of ice is 3.8GPa. Thus, the difference is only by a factor of 2.5. Since creating an

ordered network of molecules during photopolymerization is rare, we expect the difference between the E∞ of
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the uncured monomer and the cured polymer to be negligible in comparison to the change in viscosity. Going

back to water as an example, viscosity changes from 10−3 Pa.s to almost 1013 Pa.s for ice. So if we measure the

relaxation time constant (E∞/η(t)) during water to ice transformation, and use the modulus of ice to calculate

the viscosity during the transformation, then we will still get accurate viscosity values within a factor of 10.

Figure 2 The modulus of response obtained for a given frequency (ω) is a function of the relaxation time constant. If we
increase the viscosity of a material (in our case through polymerization), then we can expect the storage modulus-vs-ω
curve to shift towards lower frequencies. Thus, for the same probing frequency ωprobe we have E2 > E1 if τ2 > τ1.

D Crosslinks density from DC

The Degree of Conversion (DC) is measured using the IR spectrometer as a part of the tensometer. So a kinetic

model to calculate DC is not required. But a strategy to deduce the crosslinks density from this experimentally

measured DC is needed, which is accomplished in the following way.

Let the concentration of active radicals in the system while curing be [R]. Let [M0], [M1], and [M2], be

the concentrations of uncured monomers, monomers with only one functional group converted, and monomers

with both the functional groups converted, respectively. The crosslinks density is directly proportional to [M2].

All the four concentrations are functions of time. Further constraint on the system is

[M0](t)+ [M1](t)+ [M2](t) = [M0](0) (5)

Without loss of generality it is assumed that [M](0) = 1, because we can always normalize the concentrations

with respect to the initial value. This way each of the concentration variables represent [Mi] represent mole

fraction of each type of monomers. The ordinary differential equations describing the change in the monomer

concentrations are
d[M0]

dt
=−2kp[R][M0] (6)
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d[M1]

dt
= 2kp[R][M0]− kp[R][M1] (7)

and
d[M2]

dt
= kp[R][M1] (8)

Note, that the termination process effects the concentration [R], but does not show up directly in the kinetics

of the propagation and crosslinking process.

For the bifunctional monomers considered, the Degree of Conversion is

DC =
[M1]+2[M2]

2
(9)

because we have assumed [M0](0) = 1. The ODE for DC obtained using Eq. (7) and (8) is

dDC
dt

=
1
2

(
d[M1]

dt
+2

d[M2]

dt

)
=

1
2

kp[R](2[M0]+ [M1]) (10)

Thus the growth rate of [M2] with respect to DC is given by

d[M2]

dDC
=

2[M1]

2[M0]+ [M1]

=
4(DC− [M2])

2[M0]+2[M1]+2[M2]− [M1]−2[M2]

=
2(DC− [M2])

1−DC
(11)

Rewriting the above equation as
d[M2]

dDC
+

2
1−DC

[M2] =
2DC

1−DC
(12)

using the integrating factor

exp
(∫ DC 2

1− x
dx
)
=

1
(1−DC)2 (13)
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the ODE can be written as

1
(1−DC)2

d[M2]

dDC
+

2
(1−DC)3 [M2] =

2DC
(1−DC)3

d
dDC

(
1

(1−DC)2 [M2]

)
=

2DC
(1−DC)3(

1
(1−DC)2 [M2] =

∫ 2DC
(1−DC)3 dDC

1
(1−DC)2 [M2] =

2DC−1
(1−DC)2 +C (14)

Using the initial condition [M2](0) = 0 the solution is

[M2] = DC2 (15)

Since we have normalized the concentrations with respect to initial value [M0](0), Eq. (15) gives us the mole

fraction of crosslinks as a function of Degree of Conversion. The number density of crosslinks can be calculated

using

ρcl = [M2]ρ0 (16)

where ρ0 is the number density of monomer molecules before curing. The three mole fractions ([M0], [M1], [M2])

as a solution to Eq. (11) is shown in Fig. 3.
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Figure 3 Mole fractions of different types of monomers with respect to DC for a bifunctional monomer.

The reaction rate equations (6)-(8) uses globally averaged concentration of monomers. But this is an ap-

proximation especially at low degree of conversion. As during the initial stages of polymerization, the monomers
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that have undergone first polymerization are not uniformly distribution in the resin, but are closer to the active

radical. Thus from the point of view of the radical, the effective concentration of [M1] is higher than the globally

averaged concentration.

High temperature DMA measurement of BisGMA:TEGDMA resins have been reported in the literature2. But

as the reported storage modulus curves have not reached a plateau for all the cases it is not possible to conclude

the crosslink density for all of them. Only for DC = 41% at 100 ◦C in2 we have a plateauing storage modlus

≈10 MPa. Using our method we obtain around 4.6 MPa. But additional polymerization during heating can be

responsible for the experimental value being higher.

We present a different qualitative comparison in Fig. 4. The experimentally observed growth in the flexural

strength of a BisGMA:TEGDMA composite3 against the crosslinks concentration equation (15) is shown. Since

the same composite has been cured to different DC, the flexural (or failure) strength should display some

dependency on DC. Here we observe that the growth law for the flexural strength is similar to the one we

theoretically derived for crosslinks. Curve fitting the flexural strength data against the polynomial aDC2, yielded

a regression coefficient of 0.95. Still, the purpose of this comparison is qualitative only as the flexural strength

of a composite is a complex material behavior.
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Figure 4 Growth of Flexural Strength with DC for a BisGMA:TEGDMA composite in comparison to DC2.
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