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A. Networks with pinned particles.

To eliminate floppy translational modes, we consider networks
with pinned particles. We choose these particles randomly, start-
ing from an isostatic network1. To ensure the the spatial homo-
geneity of constraints, we divide the network into small rectan-
gles with one to two pinned particles chosen in each. Each time
a particle is pinned, we remove d bonds connecting it to its best
connected neighbors, so that the resulted network is still isostatic.
An example of such a network is shown in Fig. S1.

Following the formalism described in the previous section, we
can compute the singular values for the pinned network. No-
tice that the structure matrix S of the pinned network includes
bonds connecting the pinned and free particles. The resulting
distributions are shown in the bottom panel of Fig. 3 in the main
text. The cusp at κ = 0 is seems to disappear, and the distribution
nicely converges to our theoretical prediction.

B. A general perturbative expansion.

In this section we specialize the general result of2 to the case
where the eigenvalues ξ are all close to unity. More precisely, we
write ξ := e

√
εζ with ε → 0, and where ζ has an arbitrary even

distribution P(ζ ) = P(−ζ ). We will denote its variance as ζ2 and
its fourth moment as ζ4.

The first task is to compute ψ(z) as defined in the text, Eq.(5),
up to order ε2. One readily finds:

ψ(z) =
z

1− z
+
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ε

ζ2

2
+ ε

2 ζ4

24

]
z(1+ z)
(1− z)3 + ε

2
ζ4

z2(1+ z)
(1− z)5 +O(ε4).

(S1)
Now, one should invert this relation to find χ such that χ(ψ(z)) =
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Fig. S1 An isostatic 2-dimensional network z = 4 with four pinned
particles, shown in red. The boundaries are open on the left and right
hand sides of the network, and periodic in the vertical direction. Black
arrows show a typical floppy mode penetrating the network.
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z. Proceeding order by order in ε leads to:
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]
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)
, (S2)

where we introduced the ratio κ = ζ4/ζ 2
2 . From χ one de-

duces the S-transform as S(z) = (1+ z)χ(z)/z and finally F(z) =
1/
√

S(z−1) to order ε2:
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(S3)

This allows us to determine the edges of the distribution as tmin =

F(0) and tmax = F(1), which are found to be at a distance O(ε) of
t = 1. The cumulative distribution P(t) of the eigenvalues of the
asymptotic product as the inverse of F(z):

F(P(t)) = t. (S4)

Taking the derivative of this expression with respect to t and in-
troducing the pdf f (t) = P′(t) one gets:

f (t)
∂F
∂ z

∣∣∣∣
z=P(t)

= 1 (S5)

From the above expression of F(z), one derives, setting z := (1+
u)/2

∂F
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[
κ(3u2−1)− (6u2−u+1)

]
. (S6)

To order ε2, one therefore only needs the relation between t and
u at order ε, which reads:

t = 1+
1
4

εζ2u. (S7)

It turns out to be more convenient to work with the variable x
such that εζ2x := 4ln t. In particular, due to the symmetry t→ 1/t,
one must find that the distribution of x is even. The final result is,
to leading order:

f (x) = 2+ ε
ζ2

2

[
(κ−1)+

ζ2

4
(6−3κ)x2

]
, (S8)

for x ∈ [−1+εζ2/4,1−εζ2/4], and zero otherwise. By inspection,
this distribution is indeed even in x.
The conclusion of this computation is that:

• To lowest order in ε, the distribution of eigenvalues t is uni-
versal and uniform around unity, in a symmetric interval of

size εζ2/2. This ties up with the result obtained in the con-
text of 1-d disordered conductors in the corresponding limit,
see3, section III.B.

• To next order, we find that the distribution acquires a
parabolic shape, with a curvature that depends on κ, i.e.
the kurtosis of the distribution of ζ ∝ lnξ . For a bimodal
distribution, one finds κ = 1 and a positive curvature, such
that t = 1 is a minimum of the distribution. As soon as κ > 2
(for example for a Gaussian distribution of ζ ), the curvature
is negative and t = 1 is the mode of the distribution. The
case of a Cauchy distribution for λ =

√
ξ , as in the text,

corresponds to κ = 5, such that the distribution indeed is
expected to be bell shaped in this case.

• One also concludes that if freeness holds, the only way to
obtain a cusp in the distribution at t = 1 is to have an infinite
kurtosis κ at the microscopic level. This is clearly not the
case of our “slab” matrices, see Fig. 5.
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Fig. S2 Fourier transform of the displacement fields u(k) (defined in the
text) corresponding to different singular value range Λ for free isostatic
networks (top) and networks with pinned particles (bottom). The fraction
of pinned particles is 0.12. L = 16, and a is the typical distance between
the particles.
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C. Overlap with sinusoidal modes.
To check that the coupling between translational (or long wave-
length) modes and floppy modes is responsible for the apparent
cusp in the distribution g(κ), we measure the Fourier components
of the floppy modes near Λ = 1. To do so, we use the following
recipe. Let us consider that the x-axis is in the horizontal direc-
tion which connects the two open boundaries, and that the y-axis
is the vertical direction which is periodic. 1. Noticing that the
amplitude of the floppy modes varies exponentially along the x
direction, we first rescale the field by Λx/L, so that the displace-
ments are now of the similar magnitude when x varies, so that
each slab contributes similarly to the Fourier transform. 2. We
normalize the mode, and get δ~r = δ rxx̂+ δ ryŷ at each node j. 3.
We make the Fourier transformation along the direction parallel
to the open boundaries by ~u(k) = ∑ j δ rx( j)e−iky j x̂+ δ ry( j)e−iky j ŷ.
4. Finally, we compute the absolute value of ~u(k).

The results averaged over various Λ are shown in Fig. S2. In
the original networks (no pinned particles), for modes near Λ = 1
we clearly see a strong peak at k = 0 and k = 2πn/La for small
integers n. The closer to Λ = 1, the stronger is the effect. When
a fraction of the particles are pinned, this strong coupling with
translational modes and sinusoidal modes disappear. The Fourier
decomposition is then close to flat, as it should be in the free
matrix approximation where eigenvectors are random.
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Fig. S3 Growth rate of the response magnitude per unit distance
y(x)≡ 1

||R(x)||
d||R(x)||

dx rescaled by its peak value, as a function of position
x. The width of the amplification zone `edge is determined as the
distance between the free boundary and the position of the half
maximum of that plot, indicated by the symbols at the intersection with
the black line.

D. Width of the amplification zone near a free boundary.

To define in a robust way the width `edge over which edge modes
amplify the response, we consider the growth rate of the response
magnitude per unit distance 1

||R(x)||
d||R(x)||

dx as shown in Fig. S3.
`edge is then defined as the distance between the free boundary
and the position of the half maximum of that quantity (where
curves cross the black horizontal line on that plot).
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