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1 Simulation methods

Fig. A A schematic drawing of neighbouring one-patch particles.

The Kern-Frenkel model is used as the pairwise interaction between one-patch particles.1 The pair po-
tential between particles 1 and 2,u12, is written as follows :

u12(rrr12,nnn1,nnn2) =


∞ for 0< r12 ≤ d

−ε · f (rrr12,nnn1,nnn2) for d < r12 < d+δ
0 for r12 ≥ d+δ

(1)

f (rrr12,nnn1,nnn2) =


1 if nnn1 · r̂rr12 ≥ cosθap

and nnn2 · r̂rr12 ≤−cosθap

0 otherwise

(2)

d is the particle diameter,r̂rr12= rrr12/r12 andrrr12 is the vector from the centre of particle 1 to that of particle 2,
ε is the depth of the inter-patch attractive potential andδ = 0.01d is the range of the square-well potential.
nnni is a unit vector determining the position of the patch centre on particlei.

In a simulation step, a random translational and rotational move is attempted for a randomly selected
particle, and the moves are judged independently. The selection is doneN times in a step, whereN =
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2048 is the number of particles in a system. The length of a rotational step is less thanπ/30. The range
of a translational step depends on the packing density of a system, calculated from the lattice constant of
particle arrangementl before the configuration is randomized to prepare the initial state. The length of
a translational step is less than 0.01d when l − d ≤ 0.01d, otherwise less thanl − d, taking the rate of
acceptance of a step into account. The number of total simulation steps is107. Four independent simulation
runs were carried out for each parameter set and the results were averaged to give final statistics, Fig. 9.

2 Evaluation of particle packing

a

b

c

Fig. B Optical microscopy images of a close packed monolayer of bare silica particles ford = 2.04 µm. A hexagonal
arrangement is clearly observed in (a). In the magnified images in (b) and (c), voids and particles smaller than the surrounding

ones are indicated with arrows. All scale bars are10 µm.

We measured the centre-to-centre distance between nearest neighbours,r, in typical ordered states in a
hexagonal monolayer to compare local packing conditions for particles. Local density in a pattern can be
estimated fromr, such as(π/2

√
3)(d/r)2 for area fraction. However, this is not directly related to the total

density or fraction of particles in a system. An experimentally-realized close packed crystalline structure
of monodisperse hard spheres usually contains defects such as voids and grain boundaries, which reduce
the density and fraction (Fig. B). In addition, precisely estimating the total density or fraction is difficult
in some patterns because single particles are not clearly resolved in a microscopy image (see e.g. Fig. 6).
How to determiner is thus dependent on the appearance of a pattern: measuring directly from an image,
estimating from the Fourier transformation of a pattern or from the number of particles in an image.

2.1 Close packed monolayer of bare silica particles

The particles, used also for preparing the one-patch particles (see Sec. 2), formed a monolayer at the air-
water interface, then the monolayer was transferred onto a glass substrate and dried (Fig. B). On drying,
the capillary interaction by water induces a strong attraction between particles, and thus the particles are
considered to be almost close packed. The distancersi = 2.07 µm in a monodomain ford = 2.04 µm. The
difference betweenrsi andd is probably due to the size dispersion,≃ 3%. A smaller particle than average
can be in a monolayer without disturbing the lattice (Fig. B (b) and (c)); a larger particle extends it.
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2.2 Tightly packed monolayer of one-patch particles (Figs. 4 and 6)

The pattern in a P∆ state is locally anisotropic, and thus the characteristic distance is also anisotropic. The
distance parallel to a linear domainr∥P∆ = 2.07 - 2.08 µm, whereas the characteristic distance between
linear domains,λ1 = 3.62 µm in Sec. 3.1.1, corresponds tor⊥P∆ = 2.09 µm. In the H state,rH = 2.06 -
2.08 µm. The value ofr is slightly inhomogeneous in a pattern as expected from the existence of voids,
grain boundaries and other types of defects. In addition, the fact thatrH can be smaller thanrsi is acceptable
because a larger particle than average cannot intrude into the space when itsds is larger than the confinement
thicknessL.

2.3 Closely packed monolayer of thermally rotatable one-patch particles

In this packing regime, the characteristic distance is typically a few % larger than that under tight packing.
In a ZS state, see e.g. Fig. 6c1,r measured parallel to the linear domainsr∥ZS = 2.09 - 2.10 µm, and the
characteristic distance between linear domains corresponds tor⊥ZS = 2.11 - 2.13 µm. In a Tr state, see e.g.
Fig. 6c3,rTr = 2.12 - 2.13 µm.

3 Supplementary figures
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Fig. C Orientational ordering observed ford = 1.0 µm andθap= 62◦. (a - c) are the structures observed under tight packing.
(a) shows the confinement thickness dependence in a monolayer, (b) shows the order with a confinement corresponding to 22,
and (c) to 2∆. (d - f) are structures seen when the particles are closely packed and able to rotate thermally. (d) is 1∆, (e) is 22

and (f) is 2∆. All scale bars are10 µm.
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