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The contribution from ionic correlations is calculated using the Debye-Hückel Extended Mean

Spherical Approximation (DHEMSA) closure on the Ornstein-Zernike equation, shown below:1–4

ĥik = ĉik +
∑

l
ρlĉilĥlk (1)

cik = h̃ik − ln(h̃ik + 1)− βuik (2)

where ĉ and ĥ denote Fourier transforms of the direct and total correlation functions.

The liquid state approach allows for the consideration of charge ordering that is expected for

sufficiently high densities and ionic correlation strengths (Γ), which are neglected in the mean-

field approach of non-linear Debye-Hückel theory. While DHEMSA closure closely resembles the

hyper-netted chain (HNC) closure in its treatment of non-linear long-range electrostatics and short

range repulsions, the algorithm has a superior convergence, and enables an efficient calculation of

the pair correlation functions over a large parameter range of the liquid state, by an informed guess

of h(r) instead of an iterative calculation approach used in HNC.1
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With this contribution, the total free energy can be written as:

ftot(φk, Nk, χkl, fq,k, am,Γmn) = fFH(φk, Nk, χkl) + fPM(φk, fq,k, am,Γmn) (3)

where indices k and l refer to different polymeric components (A,B,C), and m and n refer to

ionic components (+,−). Here, am is the ion size, which is assumed to be equivalent for anions

and cations in this particular study. In addition, it is assumed that all ions are monovalent, and that

the anions on the polymer backbone are indistinguishable from dissociated salt anions. All cations

are likewise assumed to be indistinguishable. The counterions to the charged backbone and salt

anions are likewise indistinguishable. This simplification reduces all charge interactions to one

that can be described using a single ion size and Γ, and the indices are subsequently dropped to

give a free energy expression more specific to our system:

ftot =
φAlnφA
NA

+
φBlnφB
NB

+
φC lnφC
NC

(4)

+ (fq,AφA + fq,CφC)ln(fq,AφA + fq,CφC) + fexc(fq,AφA + fq,CφC ,Γ) (5)

Here, fq,AφA + fq,CφC represents the total amount of negative charge; to achieve electroneu-

trality, the same concentration of counterions is added. fq,A is typically varied between 0.01

and 0.1. fq,C is chosen to be 0 for the neutral solvent case, and 1 for the added salt case.

fexc(fq,AφA + fq,CφC ,Γ) describes the excess energy due to ionic correlations, which favor phase

separation as the total charge concentration fq,AφA + fq,CφC and ionic correlation strength Γ are

increased.3

While a three-component blend can form four different phases α, β, γ, and δ,5 we only con-

sider the α-β coexistence in this work by neglecting all Flory terms except for χAB. The interac-

tions governing the formation of other phases will be more rigorously investigated in a subsequent

paper.? In the α-β coexistence, phase separation is driven by the interaction between A and B

monomers. The coexistence line (or the phase boundary) is calculated by equating the chemical
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potential of each component in α (A-rich) and β (B-rich) phases. The chemical potential of each

component k, µk, is found using the following formula:6, 7

µk =
∂ftot
∂φk

+ ftot −
∑

k
φk
∂ftot
∂φk

(6)

Here, k can be A, B, or C. Derivatives with respect to a particular φk are to be taken with other

volume fractions held constant. We assume that χAB, χBC , χAC are independent of volume frac-

tion.6

This gives us µk:

µA = µFH,A + fq,Aln(fq,AφA + fq,CφC) + fq,A − fq,AφA − fq,CφC + µLS,A (7)

µB = µFH,B − fq,AφA − fq,CφC + µLS,B (8)

µC = µFH,C + fq,C ln(fq,AφA + fq,CφC) + fq,C − fq,AφA − fq,CφC + µLS,C (9)

where

µLS,k =
∂fexc
∂φk

+ fexc −
∑

k
φk
∂fexc
∂φk

(10)

and

µFH,k =
lnφk + 1

Nk

−
∑

k

φk
Nk

− 1

2

∑
o 6=p

(φo − go,k)χop(φp − gp,k) (11)

Here, go,k = 1 if o = k, and go,k = 0 if o 6= k.

We then solve for equilibrium compositions whose chemical potential in the two phases are

equal; furthermore, the volume fractions all have to add up to 1 to satisfy the incompressibility

condition.
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µαA = µβA (12)

µαB = µβB (13)

µαC = µβC (14)

φαA + φαB + φαC = φβA + φβB + φβC = 1 (15)

Once the equilibrium compositions are obtained, we use 1D self-consistent field theory (SCFT)

to find the distribution of the three components across the α − β interface using a discrete repre-

sentation of the modified diffusion equation introduced by Edwards:8

∂q(r, n)

∂n
=
a2

6

(
∂2q(r, n)

∂r2

)
− ω(r, n)q(r, n) (16)

The variables r and n are continuous forms of discrete variables i and j used in this work,

where i denotes discrete distance variable and j denotes the index of the repeat unit along a chain.7

The width of each layer i corresponds to a, the statistical segment length of one repeat unit, which

is defined so that Rg, the radius of gyration of a chain, is equal to (NA/6a)1/2. The mean field

ω(i, j) is a function of the composition along the chain, g(j), and the surrounding composition in

the layer i, φ(i). Since all polymers are homopolymers and the composition does not vary along

the chain, ω(i, j) can be written as a function of only i.

ωk(i) = ωp,k(i) + ωext,k(i)− kBT
∑

k

φk(i)

Nk

−∆ω(i) (17)

The first term, ωp,k(i) comes from enthalpic contributions characterized by Flory-Huggins pa-
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rameters χAB, χBC , χAC .

ωp,A(i) = φB(i)(1− φA(i))χAB − φB(i)φC(i)χBC + φC(i)(1− φA(i))χAC (18)

ωp,B(i) = φA(i)(1− φB(i))χAB − φA(i)φC(i)χAC + φC(i)(1− φB(i))χBC (19)

ωp,C(i) = φA(i)(1− φC(i))χAC − φA(i)φB(i)χAB + φB(i)(1− φC(i))χBC (20)

The second term, ωext,k(i), comes from electrostatic contributions characterized by Γ, fq,A, andfq,C .

This term can be calculated from the chemical potential µk:

ωext,k(i) = µk(i)− µFH,k(i) (21)

The third term in equation 17 is the entropic contribution from the three components. The last

term, ∆ω(i), comes from the incompressibility constraint, where ζ in equation 22 is inversely

proportional to the bulk incompressibility of the system.

∆ω(i)

kBT
= ζ(1−

∑
k
φk(i)) (22)

In the presence of a field, the probability distribution functions qk(i, j) can be obtained using

recursion relationships that arise from the connectivity of the chains:

qk(i, j) = λ−11qk(i− 1, j − 1) + λ0qk(i, j − 1) + (23)

λ+1qk(i+ 1, j − 1)exp(−ωk(i)/kBT ) (24)

where the λ−1, λ0, λ+1 are transition probabilites specific to the geometry of the system.6, 7 For

homopolymers, only one qk(i, j) is needed, as the composition profiles from the two ends of a

single chain are indistinguishable.

Volume fraction profiles φA(i), φB(i), φC(i) are obtained by summing the probability distribu-
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tion functions qk(i, j) from both ends:

φk(i) =
1

Nk

exp(µbulk,k/kBT − 1)

Nk∑
j=1

qk(i, j)qk(i, Nk, j) (25)

The new field is generated by the calculated volume fraction profile φk(i). The resulting proba-

bility distribution function and volume fraction profiles are iteratively and self-consistently solved

with the boundary condition where the volume fraction profile at each end (i = 0, i = imax) corre-

sponds to the bulk phase volume fraction and chemical potential µbulk,k calculated from the phase

diagram.

The interfacial tension is obtained by summing ∆ω over all of the lattice layers:9

γ =
∑
i

L(i)ω(i) (26)

where L(i) is the number of lattice sites in layer i.
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