Tuning coulombic interactions to stabilize nematic and smectic ionic liquid crystal phases in mixtures of charged soft ellipsoids and spheres

Giacomo Saielli*^a, Tommaso Margola^b, Katsuhiko Satoh*^c

Electronic Supporting Information

Snapshots and RDF of the system $ ho^{*}$ = 0.447	p. S2
Snapshots and RDF of the system $ ho^*$ = 0.50	p. S12
Snapshots and RDF of the system $ ho^*$ = 0.56	p. S20
Snapshots and RDF of the system $ ho^*$ = 0.60	p. S32
Scaled units of the interaction potential	p. S43
Preliminary results and pressure dependence	p. S44
Phase diagram	p. S45
Temperature dependence of the layer spacing <i>d</i> *	p. S46

System
$$\rho^*$$
 = 0.447

T* = 2.20

T* = 2.30

T* = 2.40

T* = 2.50

Figure S1. Snapshots obtained at the end of the production run for the system ρ^* = 0.447, q* = 0.0.

Figure S2. Radial distribution functions at the same temperatures of the snapshots of Figure S1 for the system ρ^* = 0.447 and q* = 0.0. (black line) GB-GB RFD; (red line) LJ-LJ RDF; (blue line) GB-LJ RDF.

System
$$\rho^*$$
 = 0.447

*q** = 0.5

T* = 1.00

T* = 1.45

T* = 1.50

T* = 1.60

T* = 1.80

T* = 2.00

I.

Figure S3. Snapshots obtained at the end of the production run for the system ρ^* = 0.447, q* = 0.5

Figure S4. Radial distribution functions at the same temperatures of the snapshots of Figure S3 for the system ρ^* = 0.447 and q* = 0.5. (black line) GB-GB RFD; (red line) LJ-LJ RDF; (blue line) GB-LJ RDF.

System
$$\rho^* = 0.447$$

Figure S5. Snapshots obtained at the end of the production run for the system ρ^* = 0.447, q* = 2.0

Figure S6. Radial distribution functions at the same temperatures of the snapshots of Figure S5 for the system ρ^* = 0.447 and q* = 2.0. (black line) GB-GB RFD; (red line) LJ-LJ RDF; (blue line) GB-LJ RDF.

Figure S7. Snapshots obtained at the end of the production run for the system ρ^* = 0.447, q* = 5.0

Figure S8. Radial distribution functions at the same temperatures of the snapshots of Figure S7 for the system ρ^* = 0.447 and q* = 5.0. (black line) GB-GB RFD; (red line) LJ-LJ RDF; (blue line) GB-LJ RDF.

T* = 2.00

T* = 2.70

T* = 2.80

T* = 2.90

T* = 3.00

Figure S9. Snapshots obtained at the end of the production run for the system ρ^* = 0.50, q* = 5.0

Figure S10. Radial distribution functions at the same temperatures of the snapshots of Figure S9 for the system ρ^* = 0.50 and q* = 0.0. (black line) GB-GB RFD; (red line) LJ-LJ RDF; (blue line) GB-LJ RDF.

*q** = 0.5

T* = 2.50

T* = 2.70

Figure S11. Snapshots obtained at the end of the production run for the system ρ^* = 0.50, q* = 0.5

Figure S12. Radial distribution functions at the same temperatures of the snapshots of Figure S11 for the system ρ^* = 0.50 and q* = 0.5. (black line) GB-GB RFD; (red line) LJ-LJ RDF; (blue line) GB-LJ RDF.

T* = 0.50

T* = 1.20

T* = 1.30

T* = 1.90

T* = 2.40

Figure S13. Snapshots obtained at the end of the production run for the system ρ^* = 0.50, q* = 2.0

Figure S14. Radial distribution functions at the same temperatures of the snapshots of Figure S13 for the system ρ^* = 0.50 and q* = 2.0. (black line) GB-GB RFD; (red line) LJ-LJ RDF; (blue line) GB-LJ RDF.

T*=1.00

T*=1.10

T*=1.20

Figure S16. Radial distribution functions at the same temperatures of the snapshots of Figure S15 for the system ρ^* = 0.50 and q* = 5.0. (black line) GB-GB RFD; (red line) LJ-LJ RDF; (blue line) GB-LJ RDF.

*q** = 0.0

T*=2.0

T*=2.6

T*=3.0

T*=2.4

T*=2.8

T*=3.1

T*=3.3

T*=3.4

T*=3.5

Figure S18. Radial distribution functions at the same temperatures of the snapshots of Figure S17 for the system ρ^* = 0.56 and q* = 0.0. (black line) GB-GB RFD; (red line) LJ-LJ RDF; (blue line) GB-LJ RDF.

*q** = 0.5

T*=1.9

T*=2.1

T*=2.5

T*=2.7

T*=3.0

T*=3.3

Figure S20. Radial distribution functions at the same temperatures of the snapshots of Figure S19 for the system ρ^* = 0.56 and q* = 0.5 (black line) GB-GB RFD; (red line) LJ-LJ RDF; (blue line) GB-LJ RDF.

T*=0.6

T*=1.2

T*=1.6

T*=1.0

T*=1.4

T*=1.8

Figure S21. Snapshots obtained at the end of the production run for the system ρ^* = 0.56, q* = 5.0

Figure S22. Radial distribution functions at the same temperatures of the snapshots of Figure S21 for the system ρ^* = 0.56 and q* = 5.0 (black line) GB-GB RFD; (red line) LJ-LJ RDF; (blue line) GB-LJ RDF.

*q** = 0.0

T*=2.7

T*=2.9

T*=2.6

T*=2.8

T*=3.0

T*=3.1

T*=3.3

T*=3.5

T*=3.2

T*=3.4

T*=3.6

Figure S23. Snapshots obtained at the end of the production run for the system ρ^* = 0.60, q* = 0.0

Figure S24. Radial distribution functions at the same temperatures of the snapshots of Figure S23 for the system ρ^* = 0.60 and q* = 0.0 (black line) GB-GB RFD; (red line) LJ-LJ RDF; (blue line) GB-LJ RDF.

T*=2.0

T*=2.2

T*=2.4

T*=2.1

T*=2.5

T*=2.8

T*=3.0

T*=3.1

Figure S25. Snapshots obtained at the end of the production run for the system ρ^* = 0.60, q* = 0.5

S38

Figure S26. Radial distribution functions at the same temperatures of the snapshots of Figure S25 for the system ρ^* = 0.60 and q* = 0.5 (black line) GB-GB RFD; (red line) LJ-LJ RDF; (blue line) GB-LJ RDF.

T*=2.1

Figure S28. Radial distribution functions at the same temperatures of the snapshots of Figure S27 for the system ρ^* = 0.60 and q* = 5.0 (black line) GB-GB RFD; (red line) LJ-LJ RDF; (blue line) GB-LJ RDF.

Figure S29. Snapshot of the systems $\rho^* = 0.60$, $q^* = 0.0$ at (left) $T^* = 2.5$ and (right) $T^* = 2.6$. Red line: director based on the average GB particle's orientation; Yellow line: some representative layers' orientation, to clearly highlight the tilt with the director.

Scaled units for van der Waals and Coulomb interaction

The values for the scaled parameters, m, ε_0 and σ_0 for the nematogen 4,4'-dimethoxyazoxybenzene (PAA) are m = 258 g mol⁻¹, $\varepsilon_0 = 2.19$ kJ mol⁻¹, $\sigma_0=4.5$ Å, respectively [R. Hashim, G. R. Luckhurst and S. Romano, *J. Chem. Soc.*, *Faraday Trans.*, 1995, **91**, 2141-2148].

This example is only intended as a proof that the scaled values used for all units are reasonable and not unphysical.

In SI Units, Coulomb's law is

$$V(r) = q_1 q_2 / (4\pi\epsilon_0 r_{ij})$$
 (Coulomb)

where q_1 and q_2 are charges in Coulombs, and r_{ij} is their separation in meters, while the permittivity of the free space is $\epsilon_0 = 8.8542 \cdot 10^{-12} \text{ C}^2 \text{N}^{-1} \text{m}^{-2}$.

In reduced units based on the Lennard-Jones energy ε_0 and length σ_0 parameters, the charge is

$$q^* = q/(4\pi\epsilon_0\sigma_0\cdot\epsilon_0)^{1/2}$$

Using the values of ε_0 and σ_0 mentioned above for a typical mesogen, when q = +1(e) (= 1.602 · 10⁻¹⁹ C), the dimensionless value of the scaled charge q^* is

$$q^* = q/(4\pi\epsilon_0\sigma_0\cdot\epsilon_0)^{1/2} = 11.879$$

Figure S30 Results of some preliminary tests with a box of 1354 particles (677 GB and 677 LJ).

Figure S31 Dependence of the scaled pressure, *P**, on the scaled temperature, *T**, for some selected systems.

Figure S32 Phase diagrams for the systems with $q^*=0.0$ (a), 0.5 (b), 2.0 (c). The circles indicate transition temperatures evaluated from Eq.4) with cooling and heating data.

Figure S33 Example of the dependence of the parameter d^* maximizing Eq. 4) on the temperature for the systems with a density of 0.447.