Interfacial Adsorption of pH-Responsive Polymers and Nanoparticles

Shiyi Qin and Xin Yong

Department of Mechanical Engineering, Binghamton University, The State University of New York, Binghamton, New York 13902, United States

Supplementary Table

Table S1. DPD interaction Parameters between Different Components (in Units of $k_B T/r_c$)

	water	oil	core	polyelectrolyte	counterion	salt
water	25	100	75	25	25	25
oil		25	25	45	100	100
core			25	75	75	75
polyelectrolyte				25	25	25
counterion					25	25
salt						25

Supplementary Figures

Figure S1. Instantaneous total elecrostatic force applied on the linear polyelectrolyte in the direction perpendicular to the water-oil interface as a function of the degree of ionization of the polyelectrolyte. The polymer is placed parallel to the interface at a distance of 0.175 DPD length units.

Figure S2. Density profile of water in the x direction. The four black solid lines define the positions and widths of interfacial regions for measuring the residence time.

Figure S3. (a) Time-averaged number of beads in the loop segments as a function of degree of ionization (b) Time-averaged number of beads in the tail segments as a function of degree of ionization. The error bars in (a) and (b) represent the variations among four independent runs. The length of polyelectrolytes is $L_c = 20$.

Figure S4. Probability of adsorption at the interface as a function of number of adsorbed beads for individual polyelectrolytes under different degrees of ionization. The length of polyelectrolytes in these simulations is $L_c = 20$.

Figure S5. Time evolution of the *x* positions of the center of mass of the linear polyelectrolytes for the salt-free system and the system with 10% salt concentration. The degrees of ionization of polyelectrolytes are (a) 50 % and (b) 80 %.

Figure S6. (a) Top view and (b) side view of the PNP with $\alpha = 0\%$ adsorbed at the water-oil interface. (c) Top view and (d) side view of the PNP with $\alpha = 50\%$ adsorbed at the water-oil interface. The length of polyelectrolytes grafted is 10.