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Section I: Derivation of the augmented poten-
tial

In this section, we derive the augmented dynamical matrix that
allows us to separate localized modes from extended plane-wave-
like modes at low frequency in a disordered solid. Latin indices
are used to label particles and greek indices to label cartesian
components. All summations are explicit.

The low frequency vibrational modes of a disordered solid
contain localized excitations at defects hybridized with extended
plane-wave-like modes and are the eigenvectors of the Dynamical
matrix Miα jβ = ∂ 2U

∂uiα ∂u jβ
. In order to examine the bare defects, we

must separate these two types of modes. To prevent hybridiza-
tion, our goal is to increase the energy of the plane-wave-like
modes without increasing the energy of the localized modes.

To do this, we add an extra term to the total energy of the
packing U that represents a grid of virtual points connected by a
spring-like interaction. The motion of each grid point is defined
as the motion of the particles near it, weighted by a Gaussian
function of the distance between them. The new energy is then
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where
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Fig. 1 Ratio of height variation ∆h to mean height h̄ of a grid of
gaussians of width σ and spacing a between each peak.
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kx = Floor[k/g], (3)

ky = Mod[k,g], (4)

g = L/a, (5)

where g is the number of grid points per side, a is the spacing
between grid points, and L is the side length. Kkl sets the connec-
tivity and the strength of the connection between grid points. In
this work, we connect adjacent grid points on a square grid, so
that Kkl = Kδk,l±1.

The width of the Gaussian weighting is set equal to the grid
spacing, as the sum of a grid of Gaussians with width equal to
the spacing is flat to within 10−6, as seen in Fig.1. We divide by
the Gaussian contribution of each particle near the grid point to
normalize by particle density.

The total augmented energy can be written as a quadratic func-
tion in terms of the standard dynamical matrix M and the dynam-
ical matrix M† corresponding to the augmented potential:
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To simplify notation, we introduce a weighing function
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and then Ũ becomes:
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Without loss of generality, we reindex the summations from p
to i and j
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As each term has a sum over i and j, these can be grouped
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We reindex again:
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by definition of Kronecker delta. Grouping the dimension sums
and gathering terms we find
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,
resulting in the final definition of M†,
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We can analytically determine the energy increase for plane
waves by assuming a continuous field of particles, which allows
us to go from a summation to an integral over particle positions.
We let the plane wave be defined as

ux = Asin(2πkx/L+φ),uy = 0. (15)

Then the continuous form is
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In order to deal with boundary conditions, we take the limit as
Gt → ∞. we also set σ = a, and λ = L/k. This computation gives
the result
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which is shown by the dashed lines in Fig. 2 in the main text.

Section II: Choosing model parameters
To choose a value for the parameter K, the connection strength,
we calculate the total number of localized modes of the 50 low-
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Fig. 2 The 50 lowest frequency modes in 100 packings, sorted by type
as in Fig.3 b, plotted as a function of K. There are three regions:
0 < K < 0.01, where the augmentation begins to have an effect,
0.01 < K < 0.02, where the augmentation begins to greatly alter the
mode structure, and 0.02 < K, where the number of spurious localized
modes grow linearly with K, as shown in the inset over a wider range of
K.

est frequency modes in the packing as a function of K, where
localized modes are defined using the radius of gyration as de-
fined in the main text. As seen in Fig 2, the number of localized
modes grows until a value of K = 0.01, and essentially plateaus
thereafter. Additionally, the number of boson peak modes is rel-
atively constant until the same value. Furthermore, the number
of plane-wave modes begins a more sharp decline at that value.
Taken together, this suggests that a value of K = 0.01 balances
the augmented energy with the internal potential energy to shift
plane waves without generating spurious localized modes.

Section III: Defining a new state
In order to define a new state, we examine seven independent
criteria: i) any change in the contact network (CR+), ii) non-
rattler1 contact changes (CR-), iii) requiring more than two par-
ticles to change contacts (C2), iv) energy differences between the
original and final basins of greater than 10−8 (E-8), v) a displace-
ment of a single particle more than two large particle diameters
in a direction perpendicular to the mode (D), vi) having a signif-
icant stress drop (S), and vii) requiring that more than 2 contact
changing particles must be neighbors, thereby rearranging as a
unit, (C2N).

As shown in Fig. 3, for each standard mode and each of the first
five definitions, we measure the ratio between the energy barrier
calculated using that definition and C2N (∆U/∆UC2N).Several of
these criteria, such as contact changes that include or exclude rat-
tlers (CR+, CR-), generate energy barriers that are significantly
lower than the other criteria and different from each other. We
note that these definitions have been used for studies of energy
barriers in the past2. This result suggests that these criteria gen-
erate a lot of “false positives” – they identify changes to the net-
work that do not correspond to a particle rearrangement. In con-
trast, the four other methods (C2, E-8, D, S) generate distribu-
tions of energy barriers with the same median as C2N, indicating
that these criteria are very similar and likely identify particle re-
arrangements associated with saddle points and plasticity.

Fig. 3 Ratio of energy barriers ∆U/∆UC2N calculated using different
definitions for what constitutes a particle rearrangement, as described in
the main text. Box and whiskers contains 50 % and 92 % of the data
points, respectively, blue bars denote the median, and outliers are
circles.

Section IV: Defect size and predictive capa-
bility
As discussed in the main text, we find that the augmented modes
are just as predictive as standard modes if we use the soft spot al-
gorithm to correlate localized excitations with plasticity, and we
can use fewer modes (15 augmented modes compared to 25 stan-
dard modes).

As a third measure of whether localized excitations predict
plastic events, we compare the distance between the center of
mass of the localized excitation and the center of mass of the re-
arrangement.

Of course, we expect that this distance will scale with the num-
ber density of candidate defects, so we first calculate the prob-
ability density P for the minimum distance r between the origin
and n points randomly distributed in 2D space:
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where Θ is the Heavyside function. The expected minimum dis-
tance for n randomly distributed points is then dn

rand =
∫

rP(r,n)dr.
Given the location of the center of a rearrangement and a list

of n locations corresponding to centers of localized excitations,
we compute the minimum distance between the rearrangement
and any localized excitation dn. We then normalize dn by the
value of a random distribution, dn

rand , and if our rearrangements
are predictive then d ≡ dn/dn

rand < 1, and there is no bias as a
function of the number or size of the localized regions.

We compare the distributions of d for several different defi-
nitions of localized excitations. We first assume every localized
augmented mode corresponds to a defect, and compare d just be-
fore (at a strain 10−6 below the critical strain) the event (denoted
’near’), as well as immediately after the previous rearrangement
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Fig. 4 Comparison of the separation distances between the center of a
mode and the center of a rearrangement. We compare standard modes,
augmented modes, and soft spots, near and far from the rearrangement,
as well as a comparison to a random distribution of the same number as
described in Section III. Each line is scaled by the expected value of a
random distribution of the same number of candidates.

(far). We repeat this procedure for the standard modes and soft
spots generated by the method of Manning and Liu3.

As shown in Fig. 4, using this strict metric, the augmented
modes display significant improvement over a random distribu-
tion with the same number of candidates (e.g. 〈d〉< 1). The aug-
mented modes are also closer in distance to the rearrangement
than soft spots once controlled for the number of candidates.

As discussed in the main text, we also want to understand how
the size of localized augmented excitations compares to the size of
soft spots. To this end, we use the published soft spots algorithm
to identify the optimal number of modes (Nm = 25) and number
of particles (Np = 20). A histogram for the number of spots and
their size are shown by the black data points in Fig. 5 a and
b, respectively. Next, we only study soft spots generated from

localized augmented modes, and since there are only ∼ 7 such
modes we expect to find approximately that number of soft spots,
which is the case, as shown by the red and magenta data points in
Fig 5a. The correlation with rearrangements is largely insensitive
to Np for values between 20 and 30, but Np does affect soft spot
size, as shown in Fig. 5b.
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Fig. 5 a) The number of clusters for the standard soft spots algorithm
(black), as well as when using only the localized augmented modes
(RG < 16), with Np = 25 (magenta) and Np = 40 (red). Using only the
localized modes gives fewer spots. Dashed lines are Gaussian fits. b)
The average number of particles per soft spot. Colors are same as in a)
.
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