Supporting Information

Transition from nematic to gyroid-type cubic soft self-assembly by sidechain engineering of π -conjugated sticky rods

Marco Poppe,^a Changlong Chen,^b Helgard Ebert,^a Silvio Poppe,^a Marko Prehm,^a Christoph Kerzig,^a Feng Liu^b and Carsten Tschierske^a

^a Institute of Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes Str.2, D-06120 Halle/Saale, Germany. E-mail: carsten.tschierske@chemie.uni-halle.

^b State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China. E-mail: feng.liu@xjtu.edu.cn

1. Additional data

1.1 DSC traces

Figure S1. DSC heating and cooling traces of compounds: a) H4, b) H6, c) H8, d) H12 and e) H18, recorded at $10 \text{ K} \cdot \text{min}^{-1}$.

Figure S2. DSC heating and cooling traces of compounds: a) F6, b) F10, c) F12, d) F14, e) F16 and f) F18, recorded at $10 \text{ K} \cdot \text{min}^{-1}$.

1.2 Additional textures

Figure S3: Selected textures of compounds **H***n* as observed between crossed polarizers between non-treated microscopy slides: a) Iso-to- N_{CybA} transition of **H4** at 262 °C, b-c) LC phases observed for **H8** on rapid cooling; b) Col_{hex} phase at $T \sim 150$ °C; c) transition Col_{hex}-Cub_{bi} at $T \sim 140$ °C and d) Cub_{bi} phase with crystallization at $T \sim 138$ °C, e) homeotropic N_{CybA} phase of **H6** at 200 °C and f) Col_{hex} phase of **H12** at 170 °C; arrows in e) indicate the orientation of polarizer and analyzer and the scale bar is given in f).

Figure S4: Selected textures of compounds **F***n* as observed between crossed polarizers between non-treated microscopy slides: a) texture at the N_{CybA}-SmA transition of compound **F8** at 181 °C; b) SmA-phase of compound **F8** at 180.5 °C; c) oily streaks texture of the SmA phase of **F8** coexisting with the Cub_{bi}/*Ia*3*d* phase at 179 °C; d) growth of the Cub_{bi}/*Ia*3*d* (black regions) and crystalline phase into the Col_{hex} (green spherulitic region) of compound **F16** at 149 °C; e) Col_{hex} phase of compound **F18** at 140 °C and f) development of the cubic phase (black areas) and, accompanied by a non-cubic birefringent 3D phase (uniformly colored mosaics) on cooling the Col_{hex} phase of **F18** at 124 °C; the 3D phase occurs only at the Col_{hex}-Cub_{bi} phase transition and disappears on further cooling.

1.3 Additional XRD data

Table S1: Experimental and calculated d-spacings, relative integrated intensities, and pl	hases
used in the reconstruction of electron densities for the $Cub_{bi}/Ia\overline{3}d$ phase for H10 at 160 °C	2. All
Intensities values are Lorentz and multiplicity corrected.	

(hkl)	$d_{\rm obs.}$ - spacings (nm)	$d_{\text{cal.}}$ - spacings (nm)	Intensity	Phase				
(211)	3.74	3.74	100.0	π				
(220)	3.24	3.24	5.7	π				
(321)	2.45	2.45	0.7	π				
(400)	2.29	2.29	13.0	π				
(420)	2.05	2.05	37.3	π				
(332)	1.95	1.95	87.2	0				
(422)	1.87	1.87	44.1	0				
(431)	1.80	1.80	21.0	0				
(521)	1.67	1.67	0.8	0				
(440)	1.62	1.62	0.4	0				
(532)	1.40	1.40	0.5	/				
(611)	1.49	1.49	1.0	/				
(541)	1.41	1.41	0.4	/				
(631)	1.35	1.41	0.04	/				
$a_{\rm cub} = 9.17 \text{ nm}$								

Table S2: Experimental and calculated *d*-spacings, relative integrated intensities, and phases used in the reconstruction of electron densities for the $Col_{hex}/p6mm$ phase for H10 at 176 °C. All intensities values are Lorentz and multiplicity corrected.

(<i>hk</i>)	$d_{\rm obs.}$ - spacings (nm)	$d_{\text{cal.}}$ - spacings (nm)	Intensity	Phase			
(10)	3.73	3.73	100.0	0			
(11)	2.15	2.15	0.2	π			
(20)	1.86	1.87	28.7	0			
(21)	1.41	1.41	0.3	π			
$a_{\rm hex} = 4.31 \ {\rm nm}$							

(hkl)	$d_{\rm obs.}$ - spacings (nm)	$d_{\text{cal.}}$ - spacings (nm)	Intensity	Phase					
(211)	3.69	3.69	100.0	π					
(220)	3.19	3.19	3.7	π					
(321)	2.41	2.41	0.5	π					
(420)	2.02	2.02	2.3	π					
(332)	1.92	1.93	4.2	0					
(422)	1.84	1.84	1.8	0					
(521)	1.65	1.65	0.1	0					
(532)	1.40	1.40	0.2	/					
(611)	1.40	1.40	0.4	/					
(541)	1.39	1.39	0.2	/					
(631)	1.33	1.33	0.3	/					
(444)	1.30	1.30	3.3	/					
(543)	1.27	1.28	3.2	/					
(640)	1.25	1.25	0.9	/					
(552)			0.7	/					
(633)	1.23	1.23	0.7	/					
(721)			0.3	/					
(642)	1.20	1.21	0.4	/					
	$a_{\rm cub} = 9.03 \text{ nm}$								

Table S3. Experimental and calculated *d*-spacings, relative integrated intensities, and phases used in the reconstruction of electron densities for the $Cub_{bi}/Ia\overline{3}d$ phase for **F18** at 120 °C. All Intensities values are Lorentz and multiplicity corrected.

Table S4. Experimental and calculated *d*-spacings, relative integrated intensities, and phases used in the reconstruction of electron densities for the $\text{Col}_{\text{hex}}/p6mm$ phase for **F18** at 145 °C. All intensities values are Lorentz and multiplicity corrected.

(<i>hk</i>)	$d_{\rm obs.}$ - spacings (nm)	$d_{\text{cal.}}$ - spacings (nm)	Intensity	Phase					
(10)	3.72	3.72	100.0	0					
(11)	2.15	2.15	0.9	π					
(20)	1.86	1.86	7.9	0					
(21)	1.40	1.41	1.2	π					
(30)	1.24	1.24	0.1	0					
	$a_{\rm hex} = 4.30 \text{ nm}$								

Figure S5: SAXS pattern of the N_{CybA} phase of F8 at 186 °C.

Table S5: Experimental and calculated *d*-spacings of the Cub_{bi}/ $Ia\overline{3}d$ phases.^a

Comp.	T/°C	2 <i>θ</i> /°	$ heta/^{\circ}$	<i>d_{obs}</i> /nm	hkl	<i>d_{calc}</i> /nm	d_{obs} - d_{calc} /nm	a _{cub} /nm
F8	160	2.375	1.188	3.720	211	3.720	0.00	9 1 1
10	100	2.747	1.374	3.216	220	3.221	-0.01	
F10	170	2,403	1,202	3,676	211	3,676	0,00	9.00
110	170	2,749	1,375	3,214	220	3.184	0.03	9.00
F14	160	2.428	1.214	3.639	211	3.637	0.00	8 91
	100	2.782	1.391	3.176	220	3.150	0.03	0.71

^a F12 was reported in ref. [S1]; F16 could not be investigated due to rapid crystallization during exposure time; the $/Ia\overline{3}d$ lattice was additionally supported by the absence of chiral domains.

Comp.	T/°C	2 <i>θ</i> /°	$\theta / ^{\circ}$	<i>d_{obs}</i> /nm	hk	d_{calc} /nm	d_{obs} - d_{calc} /nm	a _{hex} /nm
		2.384	1.192	3.706	(10)	3.706	0.00	
H18	155	4.626	2.313	1.91	(20)	1.853	0.06	4.28
		4.879	2.439	1.811	(20)	1.821	0.01	
		2.383	1.192	3.707	(10)	3,707	0.00	
F16	160	4.047	2.024	2.183	(11)	2.140	0.04	4.28
		4.791	2.396	1.844	(20)	1.854	0.01	

Table S6: Experimental and calculated *d*-spacings of the $Col_{hex}/p6mm$ phase of compounds H18 and F16.

^a H12 was reported in ref. [S2].

Figure S6: WAXS pattern of compound **H10** at a) 177 °C ($Col_{hex}/p6mm$) and b) 160 °C ($Cub/Ia\overline{3}d$).

Figure S7: WAXS patterns of a) **F8** at 185 °C (nematic), b) **F8** at 160 °C (Cub/*Ia* $\overline{3}d$), c) **F10** at 170 °C (Cub/*Ia* $\overline{3}d$) and d) **F16** at 160 °C (Col_{hex}/*p*6*mm*).

Comp	a /nm	V _{mol} /nm ³	$V_{\rm cell}/\rm nm^3$	n _{cell,cryst}	$n_{\rm cell, liq}$	$n_{\rm cell,LC}$	$n_{\rm Wall}$
H10	4.31	1.358	7.40	5.45	4.28	4.87	1.6
H12 ⁸²	4.30	1.457	7.21	4.94	3.88	4.41	1.5
H18	4.28	1.755	7.14	4.07	3.19	3.63	1.2
F16	4.28	1.703	7.14	4.19	3.29	3.74	1.2
F18	4.30	1.802	7.37	4.09	3.21	3.65	1.2

Table S7: Structural data of the $Col_{hex}/p6mm$ LC-phases of compounds Hn and Fn^a

^{*a*} V_{cell} = volume of the unit cell defined by $(3^{\frac{1}{2}} a_{hex}^2/2) \ge h$ with h = 0.46 nm corresponding to the maximum of the diffuse wide angle scattering; V_{mol} = volume for a single molecule as calculated using the crystal volume increments; $S^3 n_{cell,cryst} = V_{cell}/V_{mol}$ (average packing coefficient in the crystal is k = 0.7); $S^4 n_{cell, liq}$ = number of molecules in the unit cell of an isotropic liquid with an average packing coefficient k = 0.55, calculated according to $n_{cell, liq} =$ $0.55/0.7 \ge n_{cell, cryst}$; $n_{cell,LC}$ = number of molecules in the unit cell in the LC phase estimated as the average of $n_{cell,cryst}$ and $n_{cell,liq}$. n_{wall} = number of molecules in the lateral cross section of the cylinder walls, calculated for the triangular honeycombs as $n_{cell,LC}/n$ umber of wall per unit cell $= n_{cell,LC}/3$. $n_{wall} = 1.2$ -1.5 means that on average 1.2-1.5 molecules are laterally arranged in each hypothetical segment with h = 0.46 nm, i.e. there is a lateral staggering of the molecules in the cylinder walls or the packing of the aromatic cores is a bit closer than the assumed distance of 0.46 nm.

Comp.	H10	F8	F10	F12 ^{S1}	F14	F18
a (nm)	9.16	9.11	9.00	9.12	8.91	9.03
$V_{\text{cell}} (\text{nm}^3)$	768	756	729	758	707	736
$V_{\rm mol}~({\rm nm}^3)$	1.36	1.31	1.41	1.50	1.60	1.80
$n_{\text{cell,cryst}} = V_{\text{cell}} / V_{\text{mol}}$	565	577	517	505	442	409
<i>n</i> _{cell, liq}	444	453	406	397	347	321
<i>n</i> _{cell,LC}	505	515	462	451	395	365
$\begin{array}{c} \text{Minimal Surface } S \\ (nm^2) \end{array}$	206	204	199	204	195	200
n_{cell} / S (molecules/nm ⁻²)	2.5	2.5	2.3	2.2	2.0	1.8
$A_{\rm mol} (nm^2)$	0.41	0.40	0.43	0.45	0.49	0.55
$d_{\rm net} ({\rm nm})$	3.97	3.94	3.89	3.95	3.85	3.93

Table S8: Structural data of the cubic phases of compounds Hn and Fn.^{*a*}

^{*a*} $V_{cell} = a_{cub}^{3}$; V_{mol} = volume for a single molecule as calculated using the crystal volume increments; ^{S3} for the calculations of $n_{cell, cryst}$, $n_{cell, liq}$ and $n_{cell, LC}$, see Table S7. S = area of the minimal surface in the unit cell of the Ia3d phase^{S5} is $S = 2.4533 \times a_{cub}^{2}$; S_{mol} = molecular area on the minimal surface ($S_{mol} = S/n_{cell}$). ^{S6} d_{net} = lateral distance between the two infinite networks of the cubic mesophase as determined by $3^{\frac{1}{2}}a_{cub}/4$. ^{S5}

2. Synthesis and analytical data

2.2.1 General synthetic procedures

P1: Cross-coupling reaction according to *Sonogashira*^{S7}: A mixture of 1,4-dialkoxy-2,5diiodobenzene 4.*n* (1 equ.) and the appropriate acetylene (2.1 equ.) was dissolved in purified Et₃N (50 mL/ \leq 1 mmol). After degassing with argon for 30 min [Pd(PPh₃)₄] (3 mol%) and CuI (2 mol%) were added and the mixture was refluxed for 6 h. After removing the solvent the obtained residue was purified by column chromatography. In a similar way the syntheses of **2FSi** and **3FSi** were conducted by Sonogashira cross coupling of monovalent aryliodides using the molar ratios and catalyst given in the procedures in 2.2.3.

P2: Desilylation^{S2}: The appropriate silyl protected acetylene (1 equ.) and K_2CO_3 (5 equ) were dissolved in DCM/MeOH (2:1; 15 mL/mmol) and stirred at 20 °C. The progress of the reaction was recorded by TLC. The reaction was quenched with H₂O (50 mL) and the different phases were separated. The aqueous phase was extracted with DCM (3 x 50 mL). The combined organic phases were washed with water and brine. After drying over Na₂SO₄

the solvent was removed under reduced pressure. The residue was purified by column chromatography.

P3: Deprotection of the glycerol group with PPTS^{S8}: A mixture of the appropriate compound 5H*n* or 5Fn (1 equ.) and PPTS (tip of a spatula) was dissolved in THF/MeOH (1:1) and stirred at 50 °C for 12 h. After finishing the reaction the solvent was removed and the residue was solved in DCM. The organic layer was washed with NaHCO₃ solution (3 x 50 mL), water and brine. After drying over Na₂SO₄ the solvent was removed and the residue purified with column chromatography.

2.2.2 Synthesis of the 1,4-dialkoxy-2,5-diiodobenzenes

Scheme S1: Synthesis of the 1,4-dialkoxy-2,5-diiodobenzenes 4.n.

1,4-Dioctadecyloxy-2,5-diiodobenzene (4.18): А mixture of 1,4-dihydroxy-2,5diiodobenzene (1.00 g, 2.8 mmol), n-bromooctadecane (2.30 g, 7.0 mmol), K₂CO₃ (1.90 g, 14.0 mmol) and Bu₄NI (tip of a spatula) in anhydrous DMF (50 mL) was stirred at 120 °C for 12 h. After cooling to room temperature, the reaction was poured into water (50 mL) and the aqueous layer was extracted with Et₂O (3x50 mL). The combined organic layers were washed with saturated aqu. LiCl, water and brine. After drying over anhydrous Na₂SO₄, filtration and evaporation of the solvent, the crude product was purified by column chromatography (eluent: *n*-hexane). Colorless solid, $C_{42}H_{76}I_2O_2$, M = 866.39 g/mol, mp 82 °C, yield: 0.76 g (32%), ¹H-NMR (400 MHz, CDCl₃) δ 7.17 (s, 2H, Ar–*H*), 3.92 (t, ³*J*(H,H) = 6.4 Hz, 4H, –OCH₂–), 1.87 -1.66 (m, 4H, $-CH_{2}$), 1.57 - 1.19 (m, 56H, $-CH_{2}$), 0.87 (d, ${}^{3}J(H,H) = 7.0$ Hz, 6H, $-CH_{3}$) ppm.

2.2.3 Synthesis of 3-[4-(4-ethynylphenylethynyl)-2,3,5,6-tetrafluorophenyl]-1,2-isopropylidene-*rac*-glycerol (3F)

Scheme S2: Synthesis of **3F**. *Reagents and conditions*: *i*) K₂CO₃, DMF, 40 °C, 3d, 59%, *ii*) NEt₃, [Pd(PPh₃)₄], CuI, 40 °C, 12h, 94%, *iii*) K₂CO₃, DCM/MeOH (2:1), 2h, 60-90%.

1,2-Isopropylidene-3-(2,3,5,6-tetrafluoro-4-iodophenyl)-*rac*-glycerol (1F): According to the procedure described by Wen et al.^{S9} a mixture of pentafluoroiodobenzene (5.00 g, 17.0 mmol) and D,L-1,2-isopropylideneglycerole (2.91 g, 22.1 mmol) was solved in DMF (50 mL) and stirred for 10 min at 20 °C. After the stepwise addition of K₂CO₃ (3.04 g, 22.1 mmol) the reaction was stirred at 40 °C for 48 h. The reaction was quenched with water und the phases were separated. The aqueous phase was extracted with Et₂O (3 x 50 mL). The combined organic phases were washed with water and brine. After drying over Na₂SO₄ the solvent was removed and the residue purified by column chromatography (eluent: CHCl₃). Colourless liquid; C₁₂H₁₁F₄IO₃; M = 405.97 g/mol; yield: 4.86 g (70%). ¹H-NMR (400 MHz, CDCl₃) δ 4.53 – 4.38 (m, 1H, –OC*H*–), 4.36 – 4.26 (m, 1H, –OC*H*₂–), 4.24 – 4.09 (m, 2H, –OC*H*₂–), 4.01 – 3.89 (m, 1H, –OC*H*₂–), 1.42 (s, 3H, –C*H*₃), 1.38 (s, 3H, –C*H*₃) ppm. ¹⁹F-NMR (376 MHz, CDCl₃) δ -121.09 (td, ³*J*(F,F) = 10.2 Hz, ⁴*J*(F,F) = 5.0 Hz, Ar–*F*), -154.13 (td, ³*J*(F,F) = 10.1 Hz, ⁴*J*(F,F) = 4.9 Hz, Ar–*F*) ppm.

1,2-Isopropylidene-3-[2,3,5,6-tetrafluoro-4-(trimethylsilylethynyl)phenyl]-rac-glycerol

(2FSi): Synthesized according to P1 from 2 (4.86 g, 11.9 mmol), ethynyltrimethylsilane (1.50 g, 15.6 mmol), [Pd(PPh₃)₄] (0.42 g, 0.36 mmol) and CuI (0.05 g, 0.24 mmol). Purification by column chromatography (eluent: CHCl₃/*n*-hexane = 1:1). Colourless liquid; C₁₇H₂₀F₄O₃Si; *M* = 376.11 g/mol; yield: 4.23 g (95%). ¹H-NMR (400 MHz, CDCl₃) δ 4.49 – 4.40 (m, 1H, – OC*H*–), 4.36 – 4.29 (m, 1H, –OC*H*₂–), 4.27 – 4.11 (m, 2H, –OC*H*₂–), 3.98 – 3.90 (m, 1H, – OC*H*₂–), 1.42 (s, 3H, –C*H*₃), 1.38 (s, 3H, –C*H*₃), 0.32 (s, 9H, Si–(C*H*₃)₃) ppm. ¹⁹F-NMR (376 MHz, CDCl₃) δ -137.42 (td, ³*J*(F,F) = 10.7 Hz, ⁴*J*(F,F) = 4.0 Hz, Ar–*F*), -156.92 (td, ³*J*(F,F) = 10.6 Hz, ⁴*J*(F,F) = 3.9 Hz, Ar–*F*) ppm.

3-(4-Ethynyl-2,3,5,6-tetrafluorophenyl)-1,2-isopropylidene*-rac***-glycerol** (**2F**): Synthesized according to P2 from **3** (4.23 g, 11.3 mmol) and K₂CO₃ (7.76 g, 56.3 mmol). Purification by column chromatography (eluent: CHCl₃/*n*-hexane = 1:1)._Colourless liquid; C₁₄H₁₂F₄O₃; M = 334.12 g/mol; yield: 3.36 g (98%). ¹H-NMR (400 MHz, CDCl₃) δ 4.49 – 4.40 (m, 1H, – OC*H*–), 4.36 – 4.29 (m, 1H, –OC*H*₂–), 4.27 – 4.11 (m, 2H, –OC*H*₂–), 3.98 – 3.90 (m, 1H, – OC*H*₂–), 3.55 (s, 1H, –C*H*), 1.42 (s, 3H, –C*H*₃), 1.38 (s, 3H, –C*H*₃) ppm. ¹⁹F-NMR (376 MHz, CDCl₃) δ -137.47 (td, ³*J*(F,F) = 10.7 Hz, ⁴*J*(F,F) = 4.0 Hz, Ar–*F*), -156.70 (td, (F,F) = 10.6 Hz, ⁴*J*(F,F) = 3.9 Hz, Ar–*F*) ppm.

3-{4-[4-(Trimethylsilylethynyl)phenylethynyl]-2,3,5,6-tetrafluorophenyl}-1,2-isopropy-

lidene-*rac*-glycerol (3FSi): Synthesized according to P1 from 4 (3.37 g, 11.1 mmol), (4iodophenylethynyl)trimethylsilane (3.66 g, 12.2 mmol), $[Pd(PPh_3)_2Cl_2]$ (0.24 g, 0.3 mmol) and CuI (0.06 g, 0.31 mmol). Purification by column chromatography (eluent: CHCl₂/*n*hexane = 4:1). Colorless solid; C₂₅H₂₄F₄O₃Si; *M* = 476.14 g/mol; yield: 3.23 g (61%); mp = 95 °C. ¹H-NMR (400 MHz, CDCl₃) δ 7.53 – 7.42 (m, 4H, Ar–*H*), 4.51 – 4.40 (m, 1H, –OC*H*–), 4.33 (dd, ²*J*(H,H) = 10.1 Hz, ³*J*(H,H) = 5.1 Hz, 1H, –OC*H*₂–), 4.23 (dd, ²*J*(H,H) = 10.1 Hz, ³*J*(H,H) = 5.6 Hz, 1H, –OC*H*₂–), 4.20 – 4.11 (m, 1H, –OC*H*₂–), 3.99 – 3.92 (m, 1H, –OC*H*₂–), 1.43 (s, 3H, –C*H*₃), 1.38 (s, 3H, –C*H*₃), 0.26 (s, 9H, –Si–(C*H*₃)₃) ppm. ¹⁹F-NMR (376 MHz, CDCl₃) δ -137.53 (td, ³*J*(F,F) = 10.2 Hz, ⁴*J*(F,F) = 3.4 Hz, Ar–*F*), -156.90 (td, ³*J*(F,F) = 9.8 Hz, ⁴*J*(F,F) = 2.9 Hz, Ar–*F*) ppm.

3-[4-(4-Ethynylphenylethynyl)-2,3,5,6-tetrafluorophenyl]-1,2-isopropylidene-rac-

glycerol (**3F**): Synthesized according to P2 from **5** (3.23 g, 6.8 mmol) and K₂CO₃ (4.70 g, 33.9 mmol). Purification by column chromatography (eluent: CHCl₂/*n*-hexane = 4:1). Yellow solid; C₂₂H₁₆F₄O₃; M = 434.15 g/mol; yield: 1.22 g (44%); mp = 42 °C. ¹H-NMR (400 MHz, CDCl₃) δ 7.57 – 7.45 (m, 4H, Ar – H), 4.53 – 4.39 (m, 1H, –OCH–), 4.33 (dd, ²J(H,H) = 10.1

Hz, ${}^{3}J(H,H) = 5.1$ Hz, 1H, $-OCH_{2}-$), 4.24 (dd, ${}^{2}J(H,H) = 10.1$ Hz, ${}^{3}J(H,H) = 5.6$ Hz, 1H, $-OCH_{2}-$), 4.16 (dd, ${}^{2}J(H,H) = 8.5$ Hz, ${}^{3}J(H,H) = 6.5$ Hz, 1H, $-OCH_{2}-$), 3.96 (dd, ${}^{2}J(H,H) = 8.6$ Hz, ${}^{3}J(H,H) = 5.6$ Hz, 1H, $-OCH_{2}-$), 3.20 (s, 1H, -CH), 1.43 (s, 3H, $-CH_{3}$), 1.38 (s, 3H, $-CH_{3}$) ppm. ${}^{19}F$ -NMR (376 MHz, CDCl₃) δ -137.48 (td, ${}^{3}J(F,F) = 10.2$ Hz, ${}^{4}J(F,F) = 3.4$ Hz, Ar–*F*), -156.87 (td, (F,F) = 9.8 Hz, ${}^{4}J(F,F) = 2.8$ Hz, Ar–*F*) ppm.

2.2.4 Synthesis of the fluorinated and non fluorinated acetonides

Scheme S3: Synthesis of the fluorinated and non fluorinated acentonides 5Hn and 5Fn.

1,4-Dibutyloxy-2,5-bis{**4-[4-(1,2-isopropylidene-***rac*-**glycero-3**)**phenylethynyl]phenylethy-nyl**}**benzene (5H4):** Synthesized according to P1 from **4.4** (133 mg, 0.28 mmol), **3H** (195 mg, 0.59 mmol), [Pd(PPh₃)₄] (9.7 mg, 0.008 mmol), CuI (1.1 mg, 0.006 mmol) in NEt₃ (50 mL). Purification by column chromatography (eluent: CHCl₃). Yellow solid, $C_{58}H_{58}O_8$, M = 882.41 g/mol, mp 210 °C, yield: 250 mg (95%), ¹H-NMR (400 MHz, CDCl₃) δ 7.50 – 7.43 (m, 12H, Ar–*H*), 7.01 (s, 2H, Ar–*H*), 6.94 – 6.86 (m, 4H, Ar–*H*), 4.53 – 4.43 (m, 2H, –*CH*–), 4.18 (dd, ²*J*(H,H) = 8.5 Hz, ³*J*(H,H) = 6.4 Hz, 2H, –OC*H*₂–), 4.11 – 4.02 (m, 4H, –OC*H*₂–), 3.97 (dd, ²*J*(H,H) = 9.5 Hz, ³*J*(H,H) = 5.8 Hz, 2H, –OC*H*₂–), 3.91 (dd, ²*J*(H,H) = 8.5 Hz, ³*J*(H,H) = 5.8 Hz, 2H, –OC*H*₂–), 1.66 – 1.50 (m, 4H, –*CH*₂–), 1.47 (s, 3H, –*CH*₃), 1.41 (s, 3H, –*CH*₃), 1.01 (t, ³*J*(H,H) = 7.4 Hz, 3H, –*CH*₃) ppm.

1,4-Dihexyloxy-2,5-bis{**4-[4-(1,2-isopropylidene***-rac*-glycero-3)phenylethynyl]phenylethynyl}benzene (5H6): Synthesized according to P1 from **4.6** (328 mg, 0.75 mmol), **3H** (600 mg, 1.81 mmol), [Pd(PPh₃)₄] (26.2 mg, 0.027 mmol), CuI (2.9 mg, 0.015 mmol) in NEt₃ (50 mL). Purification by column chromatography (eluent: CHCl₃). Yellow solid, C₆₂H₆₆O₈, M = 939.20 g/mol, yield: 371 mg (53%), ¹H-NMR (400 MHz, CDCl₃) δ 7.59 – 7.36 (m, 12H, Ar–*H*), 6.99 (s, 2H, Ar–*H*), 6.91 – 6.84 (m, 4H, Ar–*H*), 4.51 – 4.42 (m, 2H, –OC*H*–), 4.16 (dd, ²*J*(H,H) = 8.5 Hz, ³*J*(H,H) 6.4 Hz, 2H, –OC*H*₂–), 4.11 – 3.99 (m, 6H, –OC*H*₂–), 3.95 (dd, ²*J*(H,H) = 9.6 Hz, ³J(H,H) = 5.9 Hz, 2H, –OC*H*₂–), 3.89 (dd, ²*J*(H,H) = 8.5 Hz, ³J(H,H) = 5.8 Hz, 2H, –OC*H*₂–), 1.48 (m, 4H, –C*H*₂–), 1.45 (s, 6H, – C*H*₃), 1.39 (s, 6H, –C*H*₃), 1.38 – 1.27 (m, 8H, –C*H*₂–), 0.89 (t, ³*J*(H,H) = 7.1 Hz, 6H, –C*H*₃) ppm.

1,4-Dioctyloxy-2,5-bis{4-[4-(1,2-isopropylidene-*rac*-glycero-3)phenylethynyl]phenyl-

ethynyl}benzene (5H8): Synthesized according to P1 from **4.8** (147 mg, 0.25 mmol), **3H** (175 mg, 0.52 mmol), [Pd(PPh₃)₄] (8.7 mg, 0.008 mmol), CuI (1.0 mg, 0.005 mmol) in NEt₃ (50 mL). Purification by column chromatography (eluent: CHCl₃). Yellow solid, C₆₆H₇₄O₈, *M* = 994.54 g/mol, mp, 157 °C, yield: 250 mg (95%), ¹H-NMR (400 MHz, CDCl₃) δ 7.52 – 7.43 (m, 12H, Ar–*H*), 7.01 (s, 2H, Ar–*H*), 6.94 – 6.87 (m, 4H, Ar–*H*), 4.54 – 4.44 (m, 2H), 4.18 (dd, ²*J*(H,H) = 8.5 Hz, ³*J*(H,H) = 6.4 Hz, 2H, –OC*H*–), 4.13 – 4.01 (m, 4H, –OC*H*₂–), 3.97 (dd, ²*J*(H,H) = 9.6 Hz, ³*J*(H,H) = 5.9 Hz, 2H, –OC*H*₂–), 3.91 (dd, ²*J*(H,H) = 8.5 Hz, ³*J*(H,H) = 5.8 Hz, 2H, –OC*H*₂–), 1.61 – 1.20 (m, 34H, –C*H*₂–, –OC*H*₃–), 0.88 (t, ³*J*(H,H) = 6.9 Hz, 6H, –C*H*₃) ppm.

1,4-Didecyloxy-2,5-bis{4-[4-(1,2-isopropylidene-*rac*-glycero-3)phenylethynyl]phenyl-

ethynyl}benzene (5H10): Synthesized according to P1 from **4.10** (122 mg, 0.20 mmol), **3H** (139 mg, 0.42 mmol), [Pd(PPh₃)₄] (6.9 mg, 0.006 mmol), CuI (0.7 mg, 0.004 mmol) in NEt₃ (50 mL). Purification by column chromatography (eluent: CHCl₃).Yellow solid, $C_{70}H_{82}O_8$, M = 1050.60 g/mol, mp 142 °C, yield: 200 mg (95%), ¹H-NMR (400 MHz, CDCl₃) δ 7.53 – 7.44 (m, 12H, Ar–*H*), 7.01 (s, 2H, Ar–*H*), 6.94 – 6.86 (m, 4H, Ar–*H*), 4.53 – 4.45 (m, 2H, – OC*H*–), 4.18 (dd, ²*J*(H,H) = 8.5 Hz, ³*J*(H,H) = 6.4 Hz, 2H, –OC*H*₂–), 4.08 (dd, ²*J*(H,H) = 9.5 Hz, ³*J*(H,H) = 5.4 Hz, 2H, –OC*H*₂–), 4.04 (t, ³*J*(H,H) = 6.4 Hz, 4H, –OC*H*₂–CH₂–), 3.97 (dd, ²*J*(H,H) = 9.6 Hz, ³*J*(H,H) = 5.9 Hz, 2H, –OC*H*₂–), 3.91 (dd, ²*J*(H,H) = 8.5 Hz, ³*J*(H,H) = 5.8 Hz, 2H, –OC*H*₂–), 1.62 – 1.16 (m, 40H, –C*H*₂–, –C*H*₃), 0.88 (t, ³*J*(H,H) = 6.9 Hz, 6H, –C*H*₃) ppm.

1,4-Dioctadecyloxy-2,5-bis{4-[4-(1,2-isopropylidene-*rac***-glycero-3)phenylethynyl]phenyl-ethynyl}benzene (5H18):** Synthesized according to P1 from **4.18** (310 mg, 0.40 mmol), **3H** (315 mg, 0.95 mmol), [Pd(PPh₃)₄] (14.0 mg, 0.012 mmol), CuI (2.0 mg, 0.008 mmol) in NEt₃ (50 mL). Purification by column chromatography (eluent: CHCl₃). Yellow solid, C₈₆H₁₁₄O₈, M = 1275.84 g/mol, yield: 93 mg (18%), ¹H-NMR (400 MHz, CDCl₃) δ 7.52 – 7.39 (m, 12H, Ar–*H*), 6.99 (s, 2H, Ar–*H*), 6.91 – 6.85 (m, 4H, Ar–*H*), 4.52 – 4.42 (m, 2H, –CH–), 4.16 (dd, ²*J*(H,H) = 8.5 Hz, ³*J*(H,H) = 6.5 Hz, 2H, –OC*H*₂–), 4.06 (dd, ²*J*(H,H) = 9.5 Hz, ³*J*(H,H) = 5.4 Hz, 2H, –OC*H*₂–), 4.02 (t, ³*J*(H,H) = 6.4 Hz, 4H, –OC*H*₂–), 3.95 (dd, ²*J*(H,H) = 9.5 Hz, ³*J*(H,H) = 5.9 Hz, 2H, –OC*H*₂–), 3.89 (dd, ²*J*(H,H) = 8.5 Hz, ³*J*(H,H) = 5.8 Hz, 2H, –OC*H*₂–), 1.89 – 1.77 (m, 4H, –C*H*₂–), 1.60 – 1.47 (m, 4H, –C*H*₂–), 1.45 (s, 6H, –C*H*₃), 1.42 – 1.15 (m, 62H, –C*H*₂–), 0.85 (t, ³*J*(H,H) = 6.8 Hz, 6H, –C*H*₃) ppm.

1,4-Dihexyloxy-2,5-bis{4-[2,3,5,6-tetrafluoro-4-(1,2-isopropylidene*-rac*-glycero-3)phenylethynyl]phenylethynyl}benzene (5F6): Synthesized according to P1 from 4.6 (122 mg, 0.23 mmol), 3F (196 mg, 0.48 mmol), [Pd(PPh₃)₄] (7.9 mg, 0.007 mmol), CuI (0.9 mg, 0.005 mmol) in NEt₃ (50 mL). Purification by column chromatography (eluent: CHCl₃). Yellow solid, $C_{62}H_{58}F_8O_8$, M = 1082.40 g/mol, mp 146 °C, yield: 240 mg (96%), ¹H-NMR (400 MHz, CDCl₃) δ 7.59 – 7.51 (m, 8H, Ar–*H*), 7.02 (s, 2H, Ar–*H*), 4.51 – 4.41 (m, 2H, –OC*H*–), 4.34 (dd, ²*J*(H,H) = 10.1 Hz, ³*J*(H,H) = 5.1 Hz, 2H, –OC*H*₂–), 4.24 (dd, ²*J*(H,H) = 10.1 Hz, ³*J*(H,H) = 5.6 Hz, 2H, –OC*H*₂–), 4.16 (dd, ²*J*(H,H) = 8.6 Hz, ³*J*(H,H) = 6.4 Hz, 2H, –OC*H*₂–), 4.04 (t, ³*J*(H,H) = 6.5 Hz, 4H, –OC*H*₂–), 3.96 (dd, ²*J*(H,H) = 8.6 Hz, ³*J*(H,H) = 5.6 Hz, 2H, – OC*H*₂–), 1.61 – 1.29 (m, 24H, –C*H*₂–, –C*H*₃), 0.91 (t, ³*J*(H,H) = 7.1 Hz, 6H, –CH₃) ppm. ¹⁹F-NMR (376 MHz, CDCl₃) δ -137.48 – -137.59 (m, Ar–*F*), -156.82 – -156.97 (m, Ar–*F*) ppm.

1,4-Dioctyloxy-2,5-bis{4-[2,3,5,6-tetrafluoro-4-(1,2-isopropylidene-*rac***-glycero-3)phenyl-ethynyl]phenylethynyl}benzene (5F8):** Synthesized according to P1 from **4.8** (129 mg, 0.22 mmol), **3F** (185 mg, 0.46 mmol), [Pd(PPh₃)₄] (5.2 mg, 0.007 mmol), CuI (0.8 mg, 0.004 mmol) in NEt₃ (50 mL). Purification by column chromatography (eluent: CHCl₃). Yellow solid, $C_{66}H_{66}F_8O_8$, M = 1138.46 g/mol, mp 135 °C, yield: 240 mg (95%), ¹H-NMR (500 MHz, CDCl₃) δ 7.60 – 7.51 (m, 8H, Ar–*H*), 7.03 (s, 2H, Ar–*H*), 4.53 – 4.42 (m, 2H, –OC*H*–), 4.35 (dd, ²*J*(H,H) = 10.1 Hz, ³*J*(H,H) = 5.2 Hz, 2H, –OC*H*₂–), 4.25 (dd, ²*J*(H,H) = 10.1 Hz, ³*J*(H,H) = 5.6 Hz, 2H, –OC*H*₂–), 4.18 (dd, ²*J*(H,H) = 8.6 Hz, ³*J*(H,H) = 6.4 Hz, 2H, –OC*H*₂–), 4.05 (t, ³*J*(H,H) = 6.4 Hz, 4H, –OC*H*₂–), 1.65 – 1.19 (m, 32H, –C*H*₂–, –C*H*₃), 0.89 (t, ³*J*(H,H) = 6.8 Hz, 6H, –C*H*₃) ppm. ¹⁹F-NMR (470 MHz, CDCl₃) δ -137.53 (td, ³*J*(F,F) = 9.9 Hz, ⁴*J*(F,F) = 3.0 Hz, Ar–*F*), -156.89 (td, ³*J*(F,F) = 9.7 Hz, ⁴*J*(F,F) = 2.6 Hz, Ar–*F*) ppm.

1,4-Didecyloxy-2,5-bis{**4-**[**2,3,5,6-tetrafluoro-4-(1,2-isopropylidene-***rac***-glycero-3**)**phenyl-ethynyl]phenylethynyl}benzene (5F10):** Synthesized according to P1 from **4.10** (135 mg, 0.21 mmol), **3F** (178 mg, 0.44 mmol), [Pd(PPh₃)₄] (7.3 mg, 0.006 mmol), CuI (0.8 mg, 0.004 mmol) in NEt₃ (50 mL). Purification by column chromatography (eluent: CHCl₃). Yellow solid, $C_{70}H_{74}F_8O_8$, M = 1194.53 g/mol, mp 141 °C, yield: 230 mg (92%), ¹H-NMR (400 MHz, CDCl₃) δ 7.58 – 7.50 (m, 8H, Ar–*H*), 7.02 (s, 2H, Ar–*H*), 4.50 – 4.42 (m, 2H, –OC*H*–), 4.34 (dd, ²*J*(H,H) = 10.2 Hz, ³*J*(H,H) = 5.1 Hz, 2H, –OC*H*₂–), 4.24 (dd, ²*J*(H,H) = 10.2 Hz, ³*J*(H,H) = 5.5 Hz, 2H, –OC*H*₂–), 4.16 (dd, ²*J*(H,H) = 8.6 Hz, ³*J*(H,H) = 6.4 Hz, 2H, –OC*H*₂–), 4.04 (t, ³*J*(H,H) = 6.4 Hz, 4H, –OC*H*₂–), 3.96 (dd, ²*J*(H,H) = 8.6 Hz, ³*J*(H,H) = 5.6 Hz, 2H, –OC*H*₂–), 1.92 – 1.78 (m, 4H, –C*H*₂–), 1.61 – 1.18 (m, 40H, –C*H*₂–, –C*H*₃), 0.87 (t, ³*J*(H,H) = 7.0 Hz, 6H, –C*H*₃) ppm. ¹⁹F-NMR (376 MHz, CDCl₃) δ -137.49 – -137.60 (m, Ar–*F*), -156.85 – -156.97 (m, Ar–*F*) ppm.

1,4-Didodecyloxy-2,5-bis{4-[2,3,5,6-tetrafluoro-4-(1,2-isopropylidene-rac-glycero-

3)phenylethynyl]phenylethynyl}benzene (5F12): Synthesized according to P1 from **4.12** (119 mg, 0.17 mmol), **3F** (144 mg, 0.36 mmol), [Pd(PPh₃)₄] (3.6 mg, 0.005 mmol), CuI (0.6 mg, 0.003 mmol) in NEt₃ (50 mL). Purification by column chromatography (eluent: CHCl₃). Yellow solid, $C_{74}H_{82}F_8O_8$, M = 1250.59 g/mol, mp 126 °C, yield: 210 mg (95%), ¹H-NMR (400 MHz, CDCl₃) δ 7.59 – 7.49 (m, 8H, Ar–*H*), 7.02 (s, 2H, Ar–*H*), 4.50 – 4.41 (m, 2H, – OC*H*), 4.33 (dd, ²*J*(H,H) = 10.1 Hz, ³*J*(H,H) = 5.1 Hz, 2H, –OC*H*₂), 4.24 (dd, ²*J*(H,H) = 10.1 Hz, ³*J*(H,H) = 5.6 Hz, 2H, –OC*H*₂), 4.04 (t, ³*J*(H,H) = 6.4 Hz, 4H, –OC*H*₂), 3.96 (dd, ²*J*(H,H) = 8.6 Hz, ³*J*(H,H) = 5.6 Hz, 2H, –OC*H*₂), 1.92 – 1.79 (m, 4H, –C*H*₂), 1.60 – 1.48 (m, 8H, –C*H*₂), 1.47 – 1.17 (m, 48H, – C*H*₂, –C*H*₃), 0.86 (t, ³*J*(H,H) = 6.7 Hz, 6H, –C*H*₃) ppm. ¹⁹F-NMR (376 MHz, CDCl₃) δ - 137.46 – -137.64 (m, Ar–*F*), -156.85 – -156.99 (m, Ar–*F*) ppm.

1,4-Ditetradecyloxy-2,5-bis{4-[2,3,5,6-tetrafluoro-4-(1,2-isopropylidene-*rac*-glycero3)phenylethynyl]phenylethynyl}benzene (5F14): Synthesized according to P1 from 4.14

(144 mg, 0.19 mmol), **3F** (161 mg, 0.40 mmol), [Pd(PPh₃)₄] (6.6 mg, 0.006 mmol), CuI (0.7 mg, 0.004 mmol) in NEt₃ (50 mL). Purification by column chromatography (eluent: CHCl₃). Yellow solid, $C_{78}H_{90}F_8O_8$, M = 1306.65 g/mol, mp 135 °C, yield: 220 mg (88%), ¹H-NMR (400 MHz, CDCl₃) δ 7.58 – 7.50 (m, 8H, Ar–*H*), 7.02 (s, 2H, Ar–*H*), 4.51 – 4.41 (m, 2H, – OC*H*–), 4.34 (dd, ²*J*(H,H) = 10.0 Hz, ³*J*(H,H) = 5.1 Hz, 2H, –OC*H*₂–), 4.24 (dd, ²*J*(H,H) = 10.0 Hz, ³*J*(H,H) = 5.6 Hz, 2H, –OC*H*₂–), 4.16 (dd, ²*J*(H,H) = 8.6 Hz, ³*J*(H,H) = 6.4 Hz, 2H, –OC*H*₂–), 4.04 (t, ³*J*(H,H) = 6.5 Hz, 4H, –OC*H*₂–), 3.96 (dd, ²*J*(H,H) = 8.6 Hz, ³*J*(H,H) = 5.6 Hz, 2H, –OC*H*₂–), 1.61 – 1.17 (m, 56H, –C*H*₂–, –C*H*₃), 0.86 (t, ³*J*(H,H) = 6.8 Hz, 6H, –C*H*₃) ppm. ¹⁹F-NMR (376 MHz, CDCl₃) δ -137.53 (td, ³*J*(F,F) = 10.2 Hz, ⁴*J*(F,F) = 3.3 Hz, Ar–*F*), -156.92 (td, ³*J*(F,F) = 9.8 Hz, ⁴*J*(F,F) = 2.8 Hz, Ar–*F*) ppm.

1,4-Dihexadecyloxy-2,5-bis{4-[2,3,5,6-tetrafluoro-4-(1,2-isopropylidene-*rac*-glycero-

3)phenylethynyl]phenylethynyl}benzene (5F16): Synthesized according to P1 from **4.16** (148 mg, 0.18 mmol), **3F** (155 mg, 0.38 mmol), [Pd(PPh₃)₄] (6.2 mg, 0.005 mmol), CuI (0.7 mg, 0.004 mmol) in NEt₃ (50 mL). Purification by column chromatography (eluent: CHCl₃). Yellow solid, $C_{82}H_{98}$ F₈O₈, M = 1362.71 g/mol, mp 89 °C, yield: 240 mg (95%), ¹H-NMR (500 MHz, CDCl₃) δ 7.59 – 7.52 (m, 8H, Ar–*H*), 7.03 (s, 2H, Ar–*H*), 4.50 – 4.43 (m, 2H, – OC*H*–), 4.35 (dd, ²*J*(H,H) = 10.1 Hz, ³*J*(H,H) = 5.0 Hz, 2H', –OC*H*₂–), 4.25 (dd, ²*J*(H,H) = 10.2 Hz, ³*J*(H,H) = 5.6 Hz, 2H, –OC*H*₂–), 4.18 (dd, ²*J*(H,H) = 8.6 Hz, ³*J*(H,H) = 6.4 Hz, 2H, –OC*H*₂–), 4.05 (t, ³*J*(H,H) = 6.4 Hz, 4H, –OC*H*₂–), 3.98 (dd, ²*J*(H,H) = 8.6 Hz, ³*J*(H,H) = 5.6 Hz, 2H, –OC*H*₂–), 1.68 – 1.12 (m, 64H, –C*H*₂–, –C*H*₃), 0.88 (t, ³*J*(H,H) = 7.1 Hz, 6H, –C*H*₃) ppm. ¹⁹F-NMR (470 MHz, CDCl₃) δ -137.46 – -137.56 (m, Ar–*F*), -156.85 – -156.95 (m, Ar–*F*) ppm.

1,4-Dioctadecyloxy-2,5-bis{4-[2,3,5,6-tetrafluoro-4-(1,2-isopropylidene-*rac*-glycero-

3)phenylethynyl]phenylethynyl}benzene (5F18): Synthesized according to P1 from **4.18** (152 mg, 0.17 mmol), **3F** (144 mg, 0.36 mmol), [Pd(PPh₃)₄] (3.5 mg, 0.005 mmol), CuI (0.6 mg, 0.003 mmol) in NEt₃ (50 mL). Purification by column chromatography (eluent: CHCl₃). Yellow solid, $C_{86}H_{106}F_8O_8$, M = 1418.78 g/mol, mp 128 °C, yield: 240 mg (95%), ¹H-NMR (500 MHz, CDCl₃) δ 7.60 – 7.52 (m, 8H, Ar–*H*), 7.03 (s, 2H, Ar–*H*), 4.52 – 4.42 (m, 2H, – OC*H*–), 4.35 (dd, ²*J*(H,H) = 10.2 Hz, ³*J*(H,H) = 5.0 Hz, 2H, –OC*H*₂–), 4.25 (dd, ²*J*(H,H) = 10.1 Hz, ³*J*(H,H) = 5.6 Hz, 2H, –OC*H*₂–), 4.18 (dd, ²*J*(H,H) = 8.6 Hz, ³*J*(H,H) = 6.4 Hz, 2H, –OC*H*₂–), 4.05 (t, ³*J*(H,H) = 6.5 Hz, 4H, –OC*H*₂–), 3.98 (dd, ²*J*(H,H) = 8.6 Hz, ³*J*(H,H) = 5.6 Hz, 2H, –OC*H*₂–), 1.61 – 1.17 (m, 72H, –C*H*₂–, –C*H*₃), 0.89 (t, ³*J*(H,H) = 7.0 Hz, 6H, –C*H*₃) ppm. ¹⁹F-NMR (470 MHz, CDCl₃) δ -137.51 (td, ³*J*(F,F) = 9.9 Hz, ⁴*J*(F,F) = 3.0 Hz, Ar–*F*), -156.90 (td, ³*J*(F,F) = 9.6 Hz, ⁴*J*(F,F) = 2.5 Hz, Ar–*F*) ppm.

2.2.5 Synthesis of compounds Hn and Fn

Scheme S4: Synthesis of compounds Hn and Fn.

1,4-Dibutyloxy-2,5-bis{4-[4-(*rac*-glycero-1)phenylethynyl]phenylethynyl}benzene **(H4)**: Synthesized according to P3 from 5H4 (250 mg, 0.28 mmol) and PPTS (tip of a spatula) in MeOH/THF (1:1, 30 mL:30 mL). Purification by column chromatography (eluent: CHCl₃:MeOH = 9:1). Yellow-greenish solid, $C_{52}H_{50}O_8$, M = 802.35 g/mol, yield: 183 mg (81%), ¹H-NMR (400 MHz, pyridine- d_5) δ 7.78 – 7.72 (m, 4H, Ar–H), 7.71 – 7.66 (m, 4H, Ar-H), 7.66 - 7.62 (m, 4H, Ar-H), 7.45 (s, 2H, Ar-H), 7.13 - 7.08 (m, 4H, Ar-H), 6.94 (br, 2H, -OH), 6.54 (br, 2H, -OH), 4.61 – 4.54 (m, 2H, -OCH-), 4.52 (dd, ²J(H,H) = 9.6 Hz, ${}^{3}J(H,H) = 4.3 \text{ Hz}, 2H, -OCH_{2}-), 4.43 \text{ (dd, }{}^{2}J(H,H) = 9.6 \text{ Hz}, {}^{3}J(H,H) = 6.3 \text{ Hz}, 2H, -OCH_{2}-),$ 4.28 - 4.18 (m, 4H, $-OCH_2$ -), 4.09 (t, ${}^{3}J(H,H) = 6.4$ Hz, 4H, $-OCH_2$ -), 1.87 - 1.76 (m, 4H, - CH_{2} -), 1.66 – 1.51 (m, 4H, – CH_{2} -), 0.95 (t, ${}^{3}J(H,H) = 7.4$ Hz, 6H, – CH_{3}) ppm. ${}^{13}C$ -NMR (126 MHz, pyridine-d₅) δ 160.06 (-OCH₂-), 154.07 (-OCH₂-), 133.38 (C_{Ar}-H), 131.80 (C_{Ar}-H), 131.77, 123.94, 117.25, 115.19, 114.96, 114.31, 95.19 (-C=C-), 92.46 (-C=C-), 88.89 (-C=C-), 88.33 (-C=C-), 71.12 (HOCH₂-), 70.86, 69.21, 64.04, 31.36 (-CH₂-), 19.34, 13.76 (-CH₃) ppm. HRMS (m/z): [M]+Li⁺-calcd. for C₅₂H₅₀O₈Li, 809.366; found 809.367. Anal. Calcd. for C₅₂H₅₀O₈·H₂O: C, 76.08; H, 6.38. Found: C, 76.21; H, 6.25.

1,4-Dihexyloxy-2,5-bis{4-[4-(*rac***-glycero-1)phenylethynyl]phenylethynyl}benzene (H6):** Synthesized according to P3 from **5H6** (371 mg, 0.40 mmol) and PPTS (tip of a spatula) in MeOH/THF (1:1, 30 mL:30 mL). Purification by column chromatography (eluent: CHCl₃:MeOH = 9:1). Yellow-greenish solid, $C_{56}H_{58}O_8$, M = 859.07 g/mol, yield: 100 mg (29%), ¹H-NMR (500 MHz, pyridine-d₅) δ 7.73 – 7.67 (m, 4H, Ar–*H*), 7.64 – 7.60 (m, 4H, Ar–*H*), 7.60 – 7.56 (m, 4H, Ar–*H*), 7.41 (s, 2H, Ar–*H*), 7.07 – 7.02 (m, 4H, Ar–*H*), 4.56 – 4.48 (m, 2H, –OC*H*–), 4.45 (dd, ²*J*(H,H) = 9.6 Hz, ³*J*(H,H) = 4.3 Hz, 2H, –OC*H*2–), 4.37 (dd, ²*J*(H,H) = 9.6 Hz, ³*J*(H,H) = 6.3 Hz, 2H, –OC*H*2–), 4.21 – 4.13 (m, 4H, –OC*H*2–), 4.04 (t, ³*J*(H,H) = 6.4 Hz, 4H, –OC*H*2–), 1.84 – 1.74 (m, 4H, –C*H*2–), 1.57 – 1.45 (m, 4H, –C*H*2–), 1.30 – 1.18 (m, 8H, –C*H*2–), 0.81 (t, ³*J*(H,H) = 7.0 Hz, 6H, –C*H*3) ppm. ¹³C-NMR (126 MHz, pyridine-d₅) δ 160.02 (–OCH2–), 154.05 (–OCH2–), 133.33 (*C*Ar–H), 131.77 (*C*Ar–H), 131.70, 117.21, 115.15, 114.91, 114.27, 95.16 (–C=C–), 92.42 (–C=C–), 88.86 (–C=C=), 88.28 (−C≡C−), 71.08 (HOCH₂−), 70.82, 69.48, 63.99, 31.48 (−CH₂−), 29.31, 25.77, 22.62, 13.89 (−CH₃) ppm. HRMS (m/z): [M]+Cl-calcd. for C₅₆H₅₈O₈Cl, 893.381; found 893.384.

(H8): 1,4-Dioctyloxy-2,5-bis{4-[4-(*rac*-glycero-1)phenylethynyl]phenylethynyl}benzene Synthesized according to P3 from 5H8 (250 mg, 0.25 mmol) and PPTS (tip of a spatula) in MeOH/THF (1:1, 30 mL:30 mL). Purification by column chromatography (eluent: CHCl₃:MeOH = 9:1). Yellow-greenish solid, $C_{60}H_{66}O_8$; M = 914.48 g/mol, yield: 208 mg (90%), ¹**H-NMR** (500 MHz, pyridine- d_5) δ 7.79 – 7.74 (m, 4H, Ar–*H*), 7.71 – 7.67 (m, 4H, Ar-H), 7.66 - 7.62 (m, 4H, Ar-H), 7.49 (s, 2H, Ar-H), 7.12 - 7.08 (m, 4H, Ar-H), 4.65 -4.53 (m, 2H, -OCH), 4.51 (dd, ${}^{2}J(H,H) = 9.6$ Hz, ${}^{3}J(H,H) = 4.3$ Hz, 2H, $-OCH_{2}$ -), 4.43 (dd, ${}^{2}J(H,H) = 9.6 \text{ Hz}, {}^{3}J(H,H) = 6.3 \text{ Hz}, 2H, -OCH_{2}$, $4.27 - 4.19 \text{ (m, 4H, -OCH_{2})}, 4.13 \text{ (t, })$ ${}^{3}J(H,H) = 6.4$ Hz, 4H, $-OCH_{2}-$), 1.93 - 1.83 (m, 4H, $-CH_{2}-$), 1.62 - 1.56 (m, 4H, $-CH_{2}-$), 1.42 - 1.18 (m, 16H, $-CH_{2}-$), 0.87 (t, ${}^{3}J(H,H) = 6.9$ Hz, 6H, $-CH_{3}$) ppm. 13 C-NMR (126) MHz, pyridine-d₅) δ 160.06 (-OCH₂-), 154.11 (-OCH₂-), 133.37 (C_{Ar}-H), 131.83 (C_{Ar}-H), 131.75, 117.29, 115.19, 114.95, 114.35, 95.21 (-C=C-), 92.46 (-C=C-), 88.92 (-C=C-), 88.32 (-C=C-), 71.12 (HOCH₂-), 70.86, 69.55, 64.03, 31.78 (-CH₂-), 29.42, 29.38, 29.35, 26.19, 22.69, 14.03 (-CH₃) ppm. HRMS (m/z): [M]+Li⁺-calcd. for C₆₀H₆₆O₈, 914.476; found 914.476. Anal. Calcd. for C₆₀H₆₆O₈·H₂O: C, 77.22; H, 7.34. Found: C, 77.68; H, 7.42.

1,4-Didecyloxy-2,5-bis{4-[4-(*rac*-glycero-1)phenylethynyl]phenylethynyl}benzene (H10): Synthesized according to P3 from 5H10 (200 mg, 0.20 mmol) and PPTS (tip of a spatula) in MeOH/THF (1:1, 30 mL:30 mL). Purification by column chromatography (eluent: CHCl₃:MeOH = 9:1). Yellow-greenish solid, $C_{64}H_{74}O_8$, M = 970.54 g/mol, yield: 153 mg (81%), ¹H-NMR (400 MHz, pyridine- d_5) δ 7.80 – 7.74 (m, 4H, Ar–H), 7.72 – 7.67 (m, 4H, Ar-H), 7.67 - 7.62 (m, 4H, Ar-H), 7.49 (s, 2H, Ar-H), 7.14 - 7.06 (m, 4H, Ar-H), 6.94 (br, 2H, -OH), 6.56 (br, 2H, -OH), 4.61 - 4.54 (m, 2H, -OCH-), 4.52 (dd, ²J(H,H) = 9.6 Hz, ${}^{3}J(H,H) = 4.3 \text{ Hz}, 2H, -OCH_{2}, 4.43 \text{ (dd, }{}^{2}J(H,H) = 9.6 \text{ Hz}, {}^{3}J(H,H) = 6.3 \text{ Hz}, 2H, -OCH_{2}, 3H_{2}, 2H_{2}, 2H_{2},$ 4.28 - 4.19 (m, 4H, $-OCH_2$ -), 4.14 (t, ${}^{3}J(H,H) = 6.4$ Hz, 4H, $-OCH_2$ -), 1.96 - 1.84 (m, 4H, - CH_{2} -), 1.68 – 1.55 (m, 4H, – CH_{2} -), 1.45 – 1.16 (m, 24H, – CH_{2} -), 0.89 (t, ${}^{3}J$ (H,H) = 6.9 Hz, 6H, -CH₃) ppm. ¹³C-NMR (101 MHz, pyridine-d₅) δ 161.56 (-OCH₂-), 155.62 (-OCH₂-), 134.87 (C_{Ar}-H), 133.33 (C_{Ar}-H), 133.25, 118.78, 116.68, 116.46, 115.85, 96.72 (-C=C-), 93.95 (-C=C-), 90.41 (-C=C-), 89.81 (-C=C-), 72.62 (HOCH₂-), 72.36, 71.06, 69.11, 65.53, 33.39 (-CH₂-), 31.25, 31.11, 30.97, 30.90, 27.73, 27.09, 24.23, 15.57 (-CH₃) ppm. HRMS (m/z): [M]+Li⁺-calcd. for C₆₄H₇₄O₈Li, 977.554, found 977.546. Anal. Calcd. for C₆₄H₇₄O₈·H₂O: C, 77.70; H, 7.74. Found: C, 77.65; H, 7.83.

1,4-Dioctadecyloxy-2,5-bis{4-[4-(*rac*-glycero-1)phenylethynyl]phenylethynyl}benzene

(H18): Synthesized according to P3 from 5H18 (93 mg, 0.07 mmol) and PPTS (tip of a spatula) in MeOH/THF (1:1, 30 mL:30 mL). Purification by column chromatography (eluent: CHCl₃:MeOH = 9:1). Yellow-greenish solid, $C_{80}H_{106}O_8$, M = 1195.71 g/mol, yield: 20 mg (23%), ¹H-NMR (500 MHz, pyridine-d₅) δ 7.74 – 7.69 (m, 4H, Ar–*H*), 7.66 – 7.62 (m, 4H, Ar–*H*), 7.62 – 7.56 (m, 4H, Ar–*H*), 7.43 (s, 2H, Ar–*H*), 7.08 – 7.03 (m, 4H, Ar–*H*), 4.54 – 4.49 (m, 2H, –OC*H*–), 4.46 (dd, ²*J*(H,H) = 9.6 Hz, ³*J*(H,H) = 4.4 Hz, 2H, –OC*H*₂–), 4.37 (dd, ²*J*(H,H) = 9.6 Hz, ³*J*(H,H) = 6.3 Hz, 2H, –OC*H*₂–), 4.21 – 4.14 (m, 4H, –OC*H*₂–), 4.09 (t, ³*J*(H,H) = 6.3 Hz, 4H, –OC*H*₂–), 1.89 – 1.80 (m, 4H, –C*H*₂–), 1.62 – 1.53 (m, 4H, –C*H*₂–), 1.40 – 1.09 (m, 56H, –C*H*₂–), 0.82 (t, ³*J*(H,H) = 7.0 Hz, 6H, –C*H*₃) ppm. ¹³C-NMR (126

MHz, pyridine-d₅) δ 160.03 (-OCH₂-), 154.07 (-OCH₂-), 135.62 (*C*_{Ar}-H), 135.51 (*C*_{Ar}-H), 135.42, 135.33, 135.22, 135.13, 135.02, 134.80, 133.33, 131.79, 131.72, 123.61, 123.51, 123.42, 123.22, 123.02, 122.78, 119.42, 115.14, 114.91, 103.99, 95.91 (-C=C-), 95.20 (-C=C-), 89.11 (-C=C-), 88.86 (-C=C-), 71.39 (HOCH₂-), 71.08, 70.83, 64.00, 31.85 (-CH₂-), 29.75, 29.72, 29.66, 29.35, 26.19, 22.67, 14.01 (-CH₃) ppm. HRMS (m/z): [M]+Cl-calcd. for C₈₀H₁₀₆O₈Cl, 1229.757; found 1229.759.

1,4-Dihexyloxy-2,5-bis{4-[2,3,5,6-tetrafluoro-4-(*rac*-glycero-1)phenylethynyl]phenyl-

ethynyl}benzene (F6): Synthesized according to P3 from **5F6** (93 mg, 0.07 mmol) and PPTS (tip of a spatula) in MeOH/THF (1:1, 30 mL:30 mL). Purification by column chromatography (eluent: CHCl₃:MeOH = 9:1). Yellow-greenish solid, $C_{56}H_{50}F_8O_8$, *M* = 1002.34 g/mol, yield: 175 mg (79%), ¹H-NMR (400 MHz, pyridine-d₅) δ 7.80 – 7.75 (m, 4H, Ar–*H*), 7.73 – 7.67 (m, 4H, Ar–*H*), 7.50 (s, 2H, Ar–*H*), 4.94 – 4.86 (m, 2H, –OC*H*₂–), 4.85 – 4.76 (m, 2H, – OC*H*₂–), 4.62 – 4.51 (m, 2H, –OC*H*–), 4.26 – 4.20 (m, 4H, –OC*H*₂–), 4.12 (t, ³*J*(H,H) = 6.4 Hz, 4H, –OC*H*₂–), 1.92 – 1.80 (m, 4H, –C*H*₂–), 1.64 – 1.51 (m, 4H, –C*H*₂–), 1.39 – 1.25 (m, 8H, –C*H*₂–), 0.88 (t, ³*J*(H,H) = 7.0 Hz, 6H, –C*H*₃) ppm. ¹⁹F-NMR (376 MHz, pyridine-d₅) δ - 139.28 – -140.26 (m, Ar–*F*), -157.71 – -158.43 (m, Ar–*F*) ppm. ¹³C-NMR (101 MHz, pyridine-d₅) δ 154.45 (–OCH₂–), 154.45 (–OCH₂–), 142.50 (*C*Ar–F), 132.45 (*C*Ar–F), 132.18 (*C*Ar–H), 125.09, 122.13, 117.56, 114.57, 100.26, 97.55 (–C≡C–), 95.24 (–C≡C–), 89.92 (–C≡C–), 77.88 (HOCH₂–), 72.05, 69.83, 63.84, 31.83 (–CH₂–), 29.64, 26.12, 22.97, 14.24 (–CH₃) ppm. HRMS (m/z): [M]+Li⁺-calcd. for C₅₆H₅₀F₈O₈Li, 1009.353, found 1009.355. Anal. Calcd. for C₅₆H₅₀F₈O₈·H₂O: C, 65.83; H, 5.13. Found: C, 65.91; H, 5.06.

1,4-Dioctyloxy-2,5-bis{4-[2,3,5,6-tetrafluoro-4-(*rac*-glycero-1)phenylethynyl]phenyl-

ethynyl}benzene (F8): Synthesized according to P3 from 5F8 (240 mg, 0.21 mmol) and PPTS (tip of a spatula) in MeOH/THF (1:1, 30 mL:30 mL). Purification by column chromatography (eluent: CHCl₃:MeOH = 9:1). Yellow-greenish solid, $C_{60}H_{58}F_8O_8$, M = 1058.40 g/mol, yield: 160 mg (72%), ¹H-NMR (400 MHz, pyridine-d₅) δ 7.84 – 7.79 (m, 4H, Ar–*H*), 7.76 – 7.71 (m, 4H, Ar–*H*), 7.54 (s, 2H, Ar–*H*), 4.97 – 4.90 (m, 2H, –OC*H*₂–), 4.88 – 4.80 (m, 2H, –OC*H*₂–), 4.64 – 4.56 (m, 2H, –OC*H*–), 4.28 – 4.22 (m, 4H, –OC*H*₂–), 4.18 (t, ³*J*(H,H) = 6.4 Hz, 4H, –OC*H*₂–), 1.99 – 1.86 (m, 4H, –C*H*₂–), 1.70 – 1.58 (m, 4H, –C*H*₂–), 1.47 – 1.21 (m, 16H, –C*H*₂–), 0.91 (t, ³*J*(H,H) = 6.9 Hz, 6H, –C*H*₃) ppm. ¹⁹F-NMR (376 MHz, pyridine-d₅) δ -139.86 – -140.01 (m, Ar–*F*), -158.02 – -158.18 (m, Ar–*F*) ppm. ¹³C-NMR (126 MHz, pyridine-d₅) δ 154.17 (–OC*H*₂–), 132.14 (*C*_{Ar}–F), 131.88 (*C*_{Ar}–H), 124.78, 121.83, 117.29, 114.30, 94.95 (–C=C–), 89.62 (–C=C–), 79.54 (–OHC*H*₂–), 77.57, 71.74, 69.56, 63.53, 31.79 (–CH₂–), 29.41, 29.39, 29.36, 26.20, 22.70, 14.01 (–CH₃) ppm. HRMS (m/z): [M]+Li⁺-calcd. for C₆₀H₅₈F₈O₈Li, 1065.416; found 1065.415. analysis (calcd. for C₆₀H₅₈F₈O₈·H₂O): C (66.91, 66.83), H (5.61, 5.50). Anal. Calcd. for C₆₀H₅₈F₈O₈·H₂O: C, 66.91; H, 5.61. Found: C, 66.83; H, 5.50.

1,4-Didecyloxy-2,5-bis{4-[2,3,5,6-tetrafluoro-4-(*rac*-glycero-1)phenylethynyl]phenyl-

ethynyl}benzene (F10): Synthesized according to P3 from **5F10** (230 mg, 0.21 mmol) and PPTS (tip of a spatula) in MeOH/THF (1:1, 30 mL:30 mL). Purification by column chromatography (eluent: CHCl₃:MeOH = 9:1). Yellow-greenish solid, $C_{64}H_{66}F_8O_8$, M = 1114.46 g/mol, yield: 181 mg (77%), ¹H-NMR (400 MHz, pyridine-d₅) δ 7.82 – 7.76 (m, 4H,

Ar–*H*), 7.73 – 7.68 (m, 4H, Ar–*H*), 7.51 (s, 2H, Ar–*H*), 4.95 – 4.86 (m, 2H, $-\text{OC}H_2$ –), 4.85 – 4.75 (m, 2H, $-\text{OC}H_2$ –), 4.62 – 4.52 (m, 2H, -OCH–), 4.26 – 4.20 (m, 4H, $-\text{OC}H_2$ –), 4.15 (t, ${}^{3}J(\text{H},\text{H}) = 6.4$ Hz, 4H, $-\text{OC}H_2$ –), 1.97 – 1.85 (m, 4H, $-\text{C}H_2$ –), 1.69 – 1.57 (m, 4H, $-\text{C}H_2$ –), 1.46 – 1.19 (m, 20H, $-\text{C}H_2$ –), 0.89 (t, ${}^{3}J(\text{H},\text{H}) = 6.9$ Hz, 6H, $-\text{C}H_3$) ppm. ¹⁹F-NMR (376 MHz, pyridine-d₅) δ -139.88 – -140.00 (m, Ar–*F*), -158.02 – -158.20 (m, Ar–*F*) ppm. ¹³C-NMR (126 MHz, pyridine-d₅) δ 154.18 ($-\text{OC}H_2$ –), 132.14 (C_{Ar} –F), 131.88 (C_{Ar} –H), 124.79, 121.83, 117.28, 114.30, 99.94 ($-\text{C}\Xi\text{C}$ –), 94.95 ($-\text{C}\Xi\text{C}$ –), 89.62 ($-\text{C}\Xi\text{C}$ –), 77.60 (HOCH₂–), 77.57, 77.55, 76.40, 71.74, 69.56, 63.53, 31.89 ($-\text{C}H_2$ –), 29.76, 29.62, 29.47, 29.43, 29.40, 26.24, 22.73, 14.04 ($-\text{C}H_3$) ppm. HRMS (m/z): [M]+Li⁺-calcd. for C₆₄H₆₆F₈O₈Li, 1121.478, found 1121.473. Anal. Calcd. for C₆₄H₆₆F₈O₈·H₂O: C, 67.83; H, 6.05. Found: C, 67.54; H, 5.94.

1,4-Didodecyloxy-2,5-bis{4-[2,3,5,6-tetrafluoro-4-(*rac*-glycero-1)phenylethynyl]phenyl-

ethynyl}benzene (F12): Synthesized according to P3 from **5F12** (210 mg, 0.18 mmol) and PPTS (tip of a spatula) in MeOH/THF (1:1, 30 mL:30 mL). Purification by column chromatography (eluent: CHCl₃:MeOH = 9:1). Yellow-greenish solid, $C_{68}H_{74}F_8O_8$, M = 1170.53 g/mol, yield: 143 mg (72%), ¹H-NMR (400 MHz, pyridine-d₅) δ 7.85 – 7.74 (m, 4H, Ar–*H*), 7.75 – 7.66 (m, 4H, Ar–*H*), 7.51 (s, 2H, Ar–*H*), 7.13 (d, ³*J*(H,H) = 5.1 Hz, 2H, –O*H*), 6.65 (t, ³*J*(H,H) = 5.4 Hz, 2H, –O*H*), 4.96 – 4.86 (m, 2H, –OC*H*₂–), 4.85 – 4.76 (m, 2H, – OC*H*₂–), 4.62 – 4.51 (m, 2H, –OC*H*–), 4.23 (t, ³*J*(H,H) = 5.2 Hz, 4H, –OC*H*₂–), 4.16 (pt, ³*J*(H,H) = 6.1 Hz, 4H, –OC*H*₂–), 2.01 – 1.84 (m, 4H, –C*H*₂–), 1.71 – 1.58 (m, 4H, –C*H*₂–), 1.50 – 1.18 (m, 32H, –C*H*₂–), 0.89 (t, ³*J*(H,H) = 6.3 Hz, 6H, –C*H*₃) ppm. ¹⁹F-NMR (376 MHz, pyridine-d₅) δ -139.83 – -140.00 (m, Ar–*F*), -158.02 – -158.19 (m, Ar–*F*) ppm. ¹³C-NMR (126 MHz, pyridine-d₅) δ 154.88 (–OC*H*₂–), 136.25 (*C*_{Ar}–F), 124.35, 117.98, 115.00 (*C*_{Ar}–H), 100.65 (–C≡C–), 95.64 (–C≡C–), 90.32 (–C≡C–), 78.27 (HOCH₂–), 77.09, 72.44, 70.26, 64.23, 32.61 (–CH₂–), 30.47, 30.40, 30.38, 30.17, 30.13, 30.11, 26.94, 23.41 (–CH₂–), 14.73 (–CH₃) ppm. HRMS (m/z): [M]+Li⁺-calcd. for C₆₈H₇₄F₈O₈Li, 1177.541; found 1177.534. Anal. Calcd. for C₆₈H₇₄F₈O₈·2H₂O: C, 67.65; H, 6.37. Found: C, 67.65; H, 6.51.

1,4-Ditetradecyloxy-2,5-bis{4-[2,3,5,6-tetrafluoro-4-(*rac*-glycero-1)phenylethynyl]-

phenylethynyl}benzene (F14): Synthesized according to P3 from **5F14** (220 mg, 0.17 mmol) and PPTS (tip of a spatula) in MeOH/THF (1:1, 30 mL:30 mL). Purification by column chromatography (eluent: CHCl₃:MeOH = 9:1). Yellow-greenish solid, $C_{72}H_{82}F_8O_8$, M = 1226.59 g/mol, yield: 154 mg (74%), ¹H-NMR (400 MHz, pyridine-d₅) δ 7.82 – 7.76 (m, 4H, Ar–*H*), 7.74 – 7.69 (m, 4H, Ar–*H*), 7.51 (s, 2H, Ar–*H*), 4.95 – 4.87 (m, 2H, –OC*H*₂–), 4.84 – 4.77 (m, 2H, –OC*H*₂–), 4.63 – 4.52 (m, 2H, –OC*H*–), 4.26 – 4.20 (m, 4H, –OC*H*₂–), 4.16 (t, ³*J*(H,H) = 6.3 Hz, 4H, –OC*H*₂–), 1.98 – 1.85 (m, 4H, –C*H*₂–), 1.71 – 1.58 (m, 4H, –C*H*₂–), 1.49 – 1.20 (m, 40H, –C*H*₂–), 0.88 (t, ³*J*(H,H) = 6.9 Hz, 6H, –C*H*₃) ppm. ¹⁹F-NMR (376 MHz, pyridine-d₅) δ -139.83 – -139.99 (m, Ar–*F*), -158.01 – -158.20 (m, Ar–*F*) ppm. ¹³C-NMR (101 MHz, pyridine-d₅) δ 152.98 (–OCH₂–), 148.79 (C_{Ar} –F), 130.94 (C_{Ar} –H), 130.69, 123.60, 120.63, 116.08, 113.10, 98.76 (–C≡C−), 93.75 (–C≡C−), 88.43 (–C≡C−), 78.34 (HOCH₂–), 76.38, 75.20, 70.54, 68.36, 62.33, 30.71 (–CH₂–), 28.60, 28.58, 28.52, 28.50, 28.28, 28.23, 28.21, 25.04, 21.52, 12.84 (–CH₃). HRMS (m/z): [M]+Li⁺-calcd. for $C_{72}H_{82}F_8O_8Li$, 1233.604, found 1233.605. Anal. Calcd. for $C_{72}H_{82}F_8O_8\cdot2H_2O$: C, 68.45; H, 6.86. Found: C, 68.65; H, 6.58.

1,4-Dihexadecylloxy-2,5-bis{4-[2,3,5,6-tetrafluoro-4-(*rac*-glycero-1)phenylethynyl]-

phenylethynyl}benzene (F16): Synthesized according to P3 from 5F16 (240 mg, 0.17 mmol) and PPTS (tip of a spatula) in MeOH/THF (1:1, 30 mL:30 mL). Purification by column chromatography (eluent: CHCl₃:MeOH = 9:1). Yellow-greenish solid, $C_{76}H_{90}F_8O_8$, M =1282.85 g/mol, yield: 181 mg (83%), ¹H-NMR (500 MHz, pyridine- d_5) δ 7.81 – 7.77 (m, 4H, Ar-H), 7.74 – 7.69 (m, 4H, Ar-H), 7.51 (s, 2H, Ar-H), 4.90 (dd, ${}^{2}J$ (H,H) = 10.1 Hz, ${}^{3}J$ (H,H) = 4.0 Hz, 2H, $-OCH_2$ -), 4.80 (dd, ${}^{2}J(H,H) = 10.1$ Hz, ${}^{3}J(H,H) = 6.3$ Hz, 2H, $-OCH_2$ -), 4.61 -4.52 (m, 2H, -OCH), 4.26 – 4.20 (m, 4H), 4.16 (t, ${}^{3}J(H,H) = 6.4$ Hz, 4H, $-OCH_{2}$ -), 1.99 – 1.87 (m, 4H, $-CH_2$ -), 1.71 - 1.59 (m, 4H, $-CH_2$ -), 1.48 - 1.18 (m, 48H, $-CH_2$ -), 0.88 (t, ${}^{3}J(H,H) = 6.9$ Hz, 6H, $-CH_{3}$) ppm. 19 F-NMR (470 MHz, pyridine-d₅) δ -138.65 - -138.77 (m, Ar-F), -156.85 - -156.97 (m, Ar-F) ppm. ¹³C-NMR (101 MHz, pyridine-d₅) δ 152.98 (-OCH₂-), 148.78 (-OCH₂-), 130.94 (C_{Ar}-F), 130.69 (C_{Ar}-H), 123.60, 120.63, 116.08, 113.10, 98.77 (-C=C-), 96.05 (-C=C-), 93.75 (-C=C-), 88.43 (-C=C-), 76.38 (HOCH₂-), 76.35, 75.20, 70.53, 68.36, 62.33, 30.71 (-CH₂-), 28.61, 28.59, 28.58, 28.51, 28.28, 28.23, 28.20, 25.04, 21.51, 12.84 (-CH₂-). HRMS (m/z): $[M]+Li^+$ -calcd. for C₇₆H₉₀F₈O₈Li, 1289.666, found 1289.667. Anal. Calcd. for C₇₆H₉₀F₈O₈·H₂O: C, 70.13; H, 7.12. Found: C, 70.24; H, 7.25.

1,4-Dioctadecyloxy-2,5-bis{4-[2,3,5,6-tetrafluoro-4-(*rac*-glycero-1)phenylethynyl]phenylethynyl}benzene (F18): Synthesized according to P3 from 5F18 (240 mg, 0.17 mmol) and PPTS (tip of a spatula) in MeOH/THF (1:1, 30 mL:30 mL). Purification by column chromatography (eluent: CHCl₃:MeOH = 9:1). Yellow-greenish solid, $C_{80}H_{98}F_8O_8$, M =1368.76 g/mol, yield: 201 mg (88%), ¹H-NMR (400 MHz, pyridine-d₅) δ 7.82 - 7.77 (m, 4H, Ar-H), 7.75 - 7.68 (m, 4H, Ar-H), 7.51 (s, 2H, Ar-H), 4.94 - 4.86 (m, 2H, -OCH₂-), 4.85 -4.76 (m, 2H, -OCH₂-), 4.62 - 4.52 (m, 2H, -OCH-), 4.26 - 4.20 (m, 4H, -OCH₂-), 4.16 (t, ${}^{3}J(H,H) = 6.3 \text{ Hz}, 4H, -OCH_{2}$, 1.98 - 1.86 (m, 4H, -CH₂-), 1.71 - 1.59 (m, 4H, -CH₂-), 1.51 - 1.19 (m, 56H, $-CH_2$ -), 0.88 (t, ${}^{3}J(H,H) = 6.9$ Hz, 6H, $-CH_3$) ppm. ${}^{19}F$ -NMR (376) MHz, pyridine-d₅) δ -139.81 - -139.99 (m, Ar-F), -158.01 - -158.18 (m, Ar-F) ppm. ¹³C-NMR (101 MHz, pyridine-d₅) δ 152.98 (-OCH₂-), 148.79 (-OCH₂-), 130.95 (C_{Ar}-F), 130.69 $(C_{Ar}-H)$, 123.60, 120.63, 116.09, 113.11, 93.75 ($-C \equiv C -$), 88.43 ($-C \equiv C -$), 76.38 (HOCH₂-), 70.53, 68.36, 62.33, 30.70 (-CH₂-), 28.60, 28.58, 28.50, 28.27, 28.23, 28.19, 25.04, 21.51, 12.84 ($-CH_3$) ppm. HRMS (m/z): [M]+Li⁺-calcd. for C₈₀H₉₈F₈O₈Li, 1345.729; found 1345.729. Anal. Calcd. for C₈₀H₉₈F₈O₈·H₂O: C, 70.77; H, 7.42. Found: C, 70.55; H, 7.11.

3. Representative NMR spectra

3.1 NMR spectra of H10

Figure S8: ¹H-NMR spectra of H10 (400 MHz, pyridine-d₅).

Figure S9: ¹³C-NMR (APT) spectra of H10 (101 MHz, pyridine-d₅).

3.2 NMR spectra of F10

Figure S10: ¹H-NMR spectra of F10 (400 MHz, pyridine-d₅).

Figure S11: ¹⁹F-NMR spectra of F10 (176 MHz, pyridine-d₅).

Figure S12: ¹³C-NMR spectra of F10 (101 MHz, pyridine-d₅).

4 References

- ¹ M. Poppe, C. Chen, F. Liu, S. Poppe and C. Tschierske, *Chem. Eur. J.* DOI: 10.1002/chem.201700905.
- ² S. Werner, H. Ebert, B.-D. Lechner, F. Lange, A. Achilles, R. Bärenwald, S. Poppe, A. Blume, K. Saalwächter, C. Tschierske and K. Bacia, *Chem. Eur. J.*, 2015, 21, 8840-8850.
- ³ A. Immirzi and B. Perini, *Acta Cryst. Sect. A*, 1977, **33**, 216–218.
- ⁴ A. I. Kitaigorodski, in "Molekülkristalle", Akademieverlag Berlin, 1979.
- ⁵ A. H. Schoen, *NASA TN D-5541, "Infinite Periodic Minimal Surfaces without Self-Intersections"*, Electronic Research Centre, Cambridge, Mass. 02139. May, 1970.
- ⁶ F. Liu, M. Prehm, X.-B. Zeng, C. Tschierske and G. Ungar, J. Am. Chem. Soc., 2014, **136**, 6846-6849.
- ⁷ K. Sonogashira, Y. Tohda, N. Hagihara, *Tetrahedron Lett.* **1975**, *50*, 4467–4470.
- ⁸ R. van Rijsbergen, M.-J. Anteunis, A. de Bruyn, J. Carbohydr. Chem., 2006, **2**, 395–404.
- ⁹ J. Wen, M. Tian, Q. Chen, J. Fluorine Chem., 1994, **68**, 117–120.