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ESI 1: Movies of jumping drops

Examples of launching drops can be found in the movies:

../air400Vshortpulse.avi

../decane400Vshortpulse.avi

../decane400Vlongpulse.avi

ESI 2: Equations of motion

To analyze the dynamics of the detachment process in a little more detail we need to derive the
equation of motion of the center of mass (CM) of the drop and of the liquid motion with respect
to the CM. Therefore we need approximating expressions for the kinetic energy and dissipation
involved. The stretching of the drop as described in Section 4, corresponds to an axis-symmetric
elongation flow. Because the system is clearly underdamped we assume little dissipation and
describe the velocity field inside and outside the droplet by the velocity potentials: ϕw(r, θ) =

An (r/R0)
n
Pn(cos θ) and ϕo(r, θ) = Bn (r/R0)

−n−1
Pn(cos θ) where R0 is the radius of the drop

and ϕw,o the velocity potential inside and outside the drop, respectively. Pn(x) is the Legendre
polynomial of order n. Because the inner and outer radial velocities ∂rϕ at the surface of the drop
near r = R0 should match, the coefficients An and Bn obey: nAn+(n+1)Bn = 0. We consider the
n = 1 and n = 2 mode; n = 1 describes the motion of the CM and n = 2 the stretching deformation
of the droplet. With these velocity potentials one calculates the kinetic energy of the internal and
external flow due to the deformation, Kw = 4

5πR0ρwA
2
2 and Ko = 8

15πR0ρoA
2
2, respectively.

Moreover, we calculate the dissipation in the internal and external flow as: Ẇw = 16πµwA
2
2/R

and Ẇo = 16·72
35 πµoA

2
2/R, respectively. Here we neglect the hydrodynamic interactions with the

substrate. So Ko/ρo = 2
3 Kw/ρw and Ẇo/µo = 72

35 Ẇw/µw ≃ 2 Ẇw/µw. Alternatively, calculating
Kw and Ẇw for the ’disc’-geometry yields for small deformations: Kw = 11

24πR
3
cρw (∂tb)

2 and
Ẇw = 6πR3

cµw (∂tb/b)
2. Using these relations to express the kinetic energy and dissipation of the

outer flow in terms of the inner flow, all energy and dissipation contributions can be expressed in
the parameters b and z and their time derivatives:

Kint = 11
24πR

3
c(ρw + 2

3ρo) (∂tb)
2 (1)

Kcm = πR3
c(ρw + 1

2ρo) (∂tz)
2 (2)

Uint = πγ ((2− η)a2 + 4ab) (3)

Ucm = 2πR3
c(ρw − ρo)g z (4)
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The contributions to the dissipation are estimated as:

Ẇint = 6π(µw + 2µo)R
3
c(∂tb/b)

2 (5)

Ẇcl = 2πµca
3(∂ta/a)

2 (6)

Ẇcm = 6πµoRc (∂tz)
2 (7)

where Ẇint represents the dissipation inside the droplet, Ẇcl the dissipation due to contact line
friction (note: a = (R3

c/b)
1/2) and Ẇcm is due to the motion of the drop through the surrounding

medium. In air density and viscosity are negligible, ρo = µo = 0. Now we can formulate the
following rate equation for the total energy:

∂t (Kcm +Kint + Ucm + Uint) = −Ẇint − Ẇcl − Ẇcm (8)

while the motion of the CM is given by Newton’s second law:

Fn − 2πR3
c(ρw − ρo) g − 6πµoRc ∂tz = 2πR3

c(ρw + 1
2ρo)∂

2
t z (9)

Because ∂t(Kcm+Ucm) = 2πR3
c(ρw+

1
2ρo) ∂tz ∂

2
t z+2πR3

c(ρw−ρo)g ∂tz last two equations decouple
in an equation for b:

∂t (Kint + Uint) = −Ẇint − Ẇcl − Fn ∂tb (10)

where we used Fn ∂tz = Fn ∂tb (because Fn = 0 when z ̸= b) and one for z:

Fn = 2πR3
c(ρw + 1

2ρo) ∂
2
t z + 2πR3

c(ρw − ρo) g + 6πµoRc ∂tz (11)

To proceed we write Eqs. (1 – 7) in a dimensionless form by scaling the energy on E0 = πγR2
c and

the time on t0 = (R3
c(ρw + 1

2ρo)/γ)
1/2. We also define the Bond number, Bo = g(ρw − ρo)R

2
c/γ,

the Ohnesorge numbers, Ohw = µw/(γ(ρw + 1
2ρo)Rc)

1/2, Oho = µo/(γ(ρw + 1
2ρo)Rc)

1/2, and the
Ohnesorge number due to contact line friction, Ohc = µc/(γ(ρw + 1

2ρo)Rc)
1/2. This results in:

Kint/E0 = νβ2
τ ν =

11

36

3ρw + 2ρo
2ρw + ρo

(12)

Kcm/E0 = ζ2τ (13)

Uint/E0 = u(β) u(β) = 4β1/2 + (2− η)β−1 (14)

Ucm/E0 = 2Bo ζ (15)

for the energy contributions, and

t0Ẇint/E0 = (6Ohw + 12Oho) β
−2 β2

τ (16)

t0Ẇcl/E0 = 1
2 Ohc β

−7/2 β2
τ (17)

t0Ẇcm/E0 = 6Oho ζ
2
τ (18)

for the dissipation. Here we used V = 2πR3
c , α = a/Rc, β = b/Rc (such that α2β = 1), ζ = z/Rc,

βτ = ∂τβ, βττ = ∂2
τβ, and so on. The differential equations now read:

∂τ
(
ν β2

τ + u(β)
)

= −
(
(6Ohw + 12Oho) β

−2 β2
τ + 1

2 Ohc β
−7/2 β2

τ

)
− F̃n βτ (19)

F̃n = 2 (Bo+ ζττ ) + 6Oho ζτ (20)

Performing the differentiation with respect to τ and defining:

f(β, βτ ) = ∂βu+ (6Ohw + 12Oho) β
−2βτ + 1

2 Ohc β
−7/2βτ (21)
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we finally obtain after division by βτ :

βττ =
2Bo+ f(β, βτ ) + 2 ζττ + 6Oho ζτ

−2ν
(22)

ζττ =


2Bo+ f(β, βτ ) + 6Oho ζτ

−2(ν + 1)
if ζττ + 3Oho ζτ +Bo > 0

−Bo− 3Oho ζτ if ζ − β > 0
(23)

where the condition ζττ + 3Oho ζτ + Bo > 0 is equivalent with: f(β, βτ ) < 2ν Bo. These ODE’s
have been solved using an rk4 integration routine with ∆τ = 0.05. During free-flight, when ζ > β

and Fn = 0, the motion of the CM is given by:

ζττ + τ−1
dspζτ +Bo = 0 (24)

where τdsp = (3Oho)
−1 is the characteristic dissipation time of the CM motion. The solution of

this equation is given by:

ζ(τ) = ζmax + τ2dspBo
(
1− e−(τ−τmax)/τdsp − (τ − τmax)/τdsp

)
(25)

Last equation describes the free-flight trajectory of the droplet in oil, i.e. the black dotted curve in
Fig. 4 of the manuscript.
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ESI 3: Additional Figures

Fig. ESI 1: Jump height versus applied voltage as calculated with our model. Green curve: water drop
launched in air after tp=8 ms, red curve: water drop launched in n-decane after tp = 10 ms and blue curve:
water drop launched in n-decane after tp = 200 ms.

Fig. ESI 2: Jump height versus applied EW number of a water drop in air. Red symbols: data from Lee et
al. [11], green symbols: data from Fig. 5, blue curve: our model calculation.
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Fig. ESI 3: Jump height versus EW pulse time as calculated with our model. The black curve represents the
gravitational energy Ugr in the highest point of the trajectory, while the red curve represents the excess sur-
face energy ∆Usurf at detachment. The blue curve represents the ratio Ugr/∆Usurf , which is approximately
0.3 in stead of 0.25 as observed in the experiments.
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