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Bacterial culture
Bacteria Escherichia coli RP4979 strain that was deficient of tumbling ability due to the lack of cheY gene was

used. RP4979 bacterial strain was transformed with a plasmid DNA that encodes constitutive expression of YFP
protein. YFP expression allows to test spatial homogeneity of bacteria in microwells. We inoculate single colony of
RP4979 in LB medium (NaCl 10 g/L, Tryptone 10 g/L, Yeast extract 5 g/L, autoclaved at 120 ◦C for 20 min) with
selective antibiotics (25 µg/mL chrolamphenicol) and then have bacteria grow at 37 ◦C with shaking 150 rpm. The
overnight culture was diluted by a factor of 100 in T-broth (NaCl 10 g/L, Tryptone 10 g/L, autoclaved at 120 ◦C for
20 min) of 50 mL with selective antibiotics and diluted culture was incubated at 30 ◦C with shaking at 150 rpm until
bacterial density reached O.D.600=0.4. Grown culture was centrifuged at 3000 rpm for 10 min and the supernatant
was removed carefully in order to increase the volume fraction of bacteria to 20%(v/v).
In addition, we used elongated bacteria that were prepared by the exposure to 20µg/mL of cephalexin (CEP),

an inhibitor of bacterial cell division, for 1 hour just before the end of cultivation. The elongated bacteria tends
to form larger vortex as shown in FIG. 1. Bacteria used in this study were transformed with a plasmid encoding
YFP protein and its YFP fluorescence allows to measure the size of individual bacteria accurately. We analyzed the
size of individual bacteria by conventional image processing and the averaged size of long axis is linearly increased
with the duration of CEP treatment. The velocity of bacteria after CEP treatments for various exposure durations
was measured as the displacement of the center of mass. The speed of bacterial motion is comparable to that of
untreated bacteria. However, we found that the maximum speed in the velocity field after PIV is 9.4±2.0µm/s for
CEP treated bacteria, which is comparable or slightly faster than the maximum speed of 8.4±0.2 µm/s in PIV for
untreated bacteria. This difference in velocity may result from the hypothetical correlation among the size of bacteria,
the size of vortices, and the alignment of bacteria but it is out of the focus of this study.

Microfabrication
　We used SU-8 3025 photoresist (Microchem) for all the photolithographies necessary in this study. Chromium

masks (MITANI micronics, Japan) were used to print patterns in the photoresist during an exposure to UV light in
a mask-aligner (MA-100, MIKASA, Japan). Molds of poly-dimetyhl siloxane (PDMS) microwells were cured on the
surface of silicon wafers, while the surface of SU-8 patterns was smoothed by coating with CYTOP, a fluorinated
coating agent (Asahi glass, Japan). PDMS elastomer was cast on top of the patterned SU-8 mold and cured at 70 ◦C
for 1 hour. The hardened PDMS was cut with a scalpel and the patterned surface was coated with MPC polymer
(Lipidure, Nichiyu Coop., Japan) and heated for 1 hour at 50 ◦C, which increased its hydrophilicity, to avoid non-
specific adhesion of bacteria. The thickness of the PDMS microwells was measured by laser scanning surface profiler
(LT-9000, Keyence, Japan) and it was about 20 µm. The glass cover slips used as the bottom of the microfluidic
chips were also coated with MPC according to the same recipe in order to avoid the non-specific adhesion of bacterial
bodies.

Image acquisition and processing
0.5µL of dense bacterial suspension was put onto the MPC-coated coverslip. Thereafter, MPC-coated PDMS

microwells were placed on top of the droplet and then pressed to enclose bacterial suspension. Bright-field optical
imaging and video-microscopy were performed using an inverted microscope (IX73, Olympus). We recorded swarming
motion of bacteria at a rate of 30 fps with a CCD camera (DMK23G445, Imaging Source) controlled by custom made
LabVIEW program. The experimental data was acquired within 30min after preparing dense bacterial suspension
in order to avoid the proliferation (doubling time is about 1.5 h in T-broth) and to use fresh bacteria without losing
motility. Velocity fields of bacterial swarm were obtained by PIV with Wiener filter method using PIVlab based on
MATLAB software. Acquired velocity fields were further smoothed by averaging over 30 frames that correspond to 1 s.
To analyze disordered state of bacterial vortices as shown in FIG. 1(a), we calculated energy spectrum E(k) of two-
dimensional space that indicates the kinetic energy at the wavenumber k = 2π/r. Two-dimensional energy spectrum

can be obtained by Fourier transform of two-point velocity correlation function as E(k) = k
2π

∫
d2r′e−ik·r′⟨v(r, t) ·

v(r + r′, t)⟩ where r′ is the distance between two arbitrary points for the calculation of velocity correlation function
at the same time point t[1].

Electronic Supplementary Material (ESI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2017



2

Model of the transition of vortex pairing
Here we consider self-propelling point-like particles that can interact through a potential U of polar alignment. The

state of particle m at time t is represented by two variables, its coordinate xm(t) and its orientational angle of motion
θm(t). Particles align their direction of motion through ∂θU(xm, θm) and their relaxation coefficient is given by γ.
Hence, the evolution of xm(t) and θm(t) belong to a Vicsek-like model as follow:

θ̇m = −γ ∂U
∂θm

+ ηm(t) (1)

where ηm(t) is random noise, which means that the direction of motion of the particles is random at infinite dilution
limit, and its correlation satisfies ⟨ηm(t)⟩=0, ⟨ηm(t)ηn(t

′)⟩=2Dδmnδ(t− t′) where δmn and δt is Dirac delta function.
D is the diffusion constant in rotational direction, which is related to noise strength.
In addition, for two-dimensional coordinate,

ẋm = v0e(θm) (2)

where e(θm) is unit vector of velocity defined as e(θm)=(cos θm, sin θm). We can easily find that particles move at a
constant speed v0 while fluctuation is involved in rotational direction alone.
The alignment of velocity vector is based on polar interaction and hence the potential U(xm, θm) is

U(xm, θm) = −
∑

|rmn|<ϵ

cos(θm − θn) (3)

where rmn = xm − xn and ϵ is the effective radius of particle interaction.
We consider a distribution of particles showing homogeneous spatial distribution. Namely, probability distribution

is a function of θ and t. For this case, Fokker-Planck equation of the point-like particles is given by

∂P

∂t
= D

∂2P

∂θ2
+ γ

∂

∂θ

(∫ π

−π

sin(θ − θ′)P (θ′, t)dθ′P (θ, t)
)

(4)

where P (θ, t;ϕ) is the probability distribution of particles heading θ at time t. The focus of this theoretical analysis
is to find analytical solution that can account for the transition from FMV to AFMV observed in experiment. In that
sense, what we need to consider is the interaction of particles from left or right circles in a doublet microwell defined
by geometric constant ϕ. As for this case, the Fokker-Planck equation can be expressed by

∂P

∂t
= D

∂2P

∂θ2
+ γ

∂

∂θ

(∫ π

−π

sin(θ − θ′)P̄ (θ′, t;ϕ)dθ′P (θ, t;ϕ)
)

(5)

where P̄ (θ′, t;ϕ) is the probability distribution of the orientation of particles θ′ at the tip from either left or right
circle. Hence, the probability distribution P (θ, t;ϕ), meaning the orientation angle θ of particles rectified by the polar
alignment at the tip, is able to be derived as the analytical solution of Eq. (4) once we get the explicit form of
P̄ (θ′, t;ϕ). Therefore, we next consider the motion of particles due to the association with boundary wall to find the
form of P̄ (θ′, t;ϕ).
The interaction between motile particles m and the wall n̄ is assumed nematic. Fokker-Planck equation of the

heading θ of particles associated with the boundary is given by

∂P̄

∂t
= D̄

∂2P̄

∂θ2
+ γ̄

∂

∂θ

(∫ π

−π

sin
(
2(θ − θ′)

)
P̄ (θ′, t)dθ′P̄ (θ, t)

)
(6)

Ū(xm, θm) = −
∑

|rmn̄|<ϵ̄

cos
(
2(θm − θn̄)

)
(7)

where rmn̄ = xm − xn̄ and ϵ̄ represents the range of the effective nematic interaction between a particle m and a
wall n̄. We note that a vortex in a circular microwell and vortex pairing patterns (FMV and AFMV) in a doublet
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microwell are persistent in time within the range of measurement. This fact allows us to consider the steady state,
∂tP = 0 and ∂tP̄ = 0, to analyze Eqs. (5) and (6), respectively. The solution of Eq.(6) at the steady state is

P̄ (θ) =
1

2πI0(αγ̄/D̄)
exp

[
αγ̄

D̄
cos 2(θ − θ0)

]
(8)

where α =
∫ π

−π
cos(2θ)P̄ (θ)dθ and I0(x) is modified Bessel function of the first kind and θ0 is the tangential angle at

the boundary. Close to the boundary, the nematic interaction with the wall is assumed strong enough to neglect the
angular noise, so that γ̄/D̄ → ∞. The condition of low noise reflects the state which P̄ (θ) is no longer constant and
thereby one can find α ̸= 0. The probability distribution is rewritten as

lim
γ̄/D̄→∞

exp
(

αγ̄
D̄

cos 2(θ − θ0)
)

2πI0(αγ̄/D̄)
= δ(θ − θ0 − lπ) (9)

where δ(θ) is the Dirac delta function and l is 0,±1,±2, · · · but δ(θ − θ0) and δ(θ − θ0 − π) are taken to describe
either clockwise or counter-clockwise motion along the boundary for later analysis. Thus, the explicit form of P̄ (θ′;ϕ)
can be obtained by considering the tangential direction of the curved boundary at the tip.
As for a doublet of circular microwells (Dcm) with geometrical parameter ϕ, given that particles enter into left

microwell by either incoming or outgoing direction at the tip, the probability of particle heading θ′ from left is given
by
(I) Outgoing from left microwell

P̄ (θ′;ϕ) = δ(θ′ − π/2 + ϕ), (10)

or
(I∗) Incoming into left microwell

P̄ (θ′;ϕ) = δ(θ′ + π/2 + ϕ). (11)

where we use the relation θ0 + ϕ = ±π/2 nearby the tip of Dcm. The particles that move along the boundary of a
doublet microwell interact close to the tip. Hence, in addition to Eqs. (10) and (11), one needs to take the bacterial
motion from the right side into account so as to describe the collective motion after the association between particles
coming from both left and right sides. Hence, the probability of particle heading θ′ from right is given by
(II) Outgoing from right microwell

P̄ (θ′;ϕ) = δ(θ′ − π/2− ϕ), (12)

or
(II∗) Incoming into right microwell

P̄ (θ′;ϕ) = δ(θ′ + π/2− ϕ). (13)

On the one hand, as shown in FIG. 4(a), one can assume that particles can form AFMV pattern when polar
interaction of ((I) and (II)) or ((I∗) and (II∗)) dominantly occurs at the middle. On the other hand, FMV pattern
results from polar interaction of ((I) and (II∗)) or ((I∗) and (II)) because the group of particles keep moving along
boundary wall. Therefore, by taking one pair of two explicit forms P (θ′;ϕ) given above, one can solve Fokker-Planck
equation of Eq. (5) and finally obtain the probability distribution of particle heading θ at the tip, as given in Eqs.
(3) and (4) in main text.

Velocity of a vortex in a circular microwell
In this section, we derive the function of angular velocity of single vortex, vθ(r), formed inside a circle of the radius

R. We assume that velocity of bacterial swarming decays at the vicinity of boundary wall so that the boundary
condition at r = R is vθ(r)=0. However, vθ(r) is proportional to r and does not satisfy the above condition if one
supposes uniform vorticity inside the circle r < R. To reconcile both vortex formation and the boundary condition
at r = R, the superposition of two different vortices has to be taken into account. Indeed, FIG. 1(d) exhibits the
presence of two regions with opposite vortices. Hence, the spatial distribution of vorticity inside the circle is given by

ω(r) =

{
ω (0 ≤ r ≤ R− s)

−ω
[
1− (R−s)2

R2

]
(R− s ≤ r ≤ R)

(14)
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where R− s is the position we find the peak of angular velocity. By solving Laplace equation, the analytic expression
of the orthoradial velocity in a circular microwell v(r, θ)=vθ(r)t(θ) can be obtained as

v(r, θ) =


ω
2

[
1− (R−s)2

R2

]
rt(θ) (0 ≤ r ≤ R− s)

ω
2

(
1− s

R

)2
R2−r2

r t(θ) (R− s ≤ r ≤ R)

0 (r > R)

(15)

where t(θ) = (− sin θ, cos θ) is the unit orthoradial vector at the angular position θ. The quantity s is 4.6µm estimated
from experimental data. In the following section, this analytic formulation is used to define the order parameter of
AFMV pattern.

Order parameter of AFMV pattern
Here we show the derivation of order parameter of anti-ferromagnetic vortices (AFMV) pattern, given by Eq. (1) in

main text. This order parameter compares the matching between the observed pattern of vortex pair in experiments
and numerically calculated AFMV. For the numerical calculation of AFMV, the phenomenological description of
vortex confined in boundary is considered as follows: for each circle composing the doublet microwell, we set an index
j, 1 stands for the left side and 2 for the right side. We define two sets of polar coordinates (rj , θj); one for left circle
is (r1, θ1) and the other for right circle is (r2, θ2). The origin of j polar coordinates is set at the center of j circle. We
consider tj(θj) the base polar orthoradial vector at the angular position θj centered on the center of the circle j for
0 ≤ rj ≤ R. In particular, we have vj(rj , θj) = vθ(rj)tj(θj) where vθ(rj) is given by Eq. (15) and ω is the vorticity
discussed at the previous section.
We then consider vortices showing AFMV pattern in the doublet microwell. In addition to the boundary condition

of a doublet of circles that is characterized by R and ∆, the polar coordinates (r, θ) is given to define the internal
space. The origin of polar coordinates is placed at the centroid of the doublet shape. The velocity field, v(r, θ), is
in turn considered as the superposition of two vortices in j=1 and 2 circles. Because two vortices in AFMV pattern
show opposite angular velocities, we can write t1(θ) = −t2(θ) and then describe the velocity field as

v(r, θ) =
∑
j

vj(rj , θj) =
∑
j

vθ(rj)tj(θj). (16)

The expected streamline of an AFMV pattern with a velocity field v(r, θ) lies on the unit vector u(r, θ) such that

u(r, θ) =
v(r, θ)

|v(r, θ)|
. (17)

To describe the transition between FMV and AFMV patterns, we consider the deviation from the expected AFMV
pattern given by the product of expected velocity orientation map u(r, θ) and the one measured experimentally p(r, θ).
The order parameter Φ is then defined as

Φ = |⟨p(r, θ) · u(r, θ)⟩| (18)

where ⟨·⟩ denotes the ensemble average over all sites in a doublet microwell. One can find p(r, θ)·u(r, θ) = cos(ψ(r, θ)−
ψ0(r, θ)) where ψ(r, θ) and ψ0(r, θ) are the orientational angles of p(r, θ) and u(r, θ), respectively. When an actual
AFMV pattern is recorded in p(r, θ), Φ is close to 1, while for an FMV pattern, it is close to 0.

Supplemental movies
We provide three movies in video supplemental material:

(Video1) A single vortex formation in a circular microwell,
(Video2) Ferromagnetic-like vortex (FMV) pairing in a doublet of circular microwells,
(Video3) Anti-ferromagnetic-like vortex (AFMV) pairing in a doublet of circular microwells.
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