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Global Structure Optimization of Clusters

Figure S1: Minimum energy structures for various interactions as determined by basin-
hopping. Lines approximately separating different domains are drawn as a guide to the
eye. Representative structures are outlined with the color corresponding to the points in the
region of phase space they were found in, indicated by the legend. For clarity colloids are
shown simply as points colored according to their type, however, in all cases they lie tangent
to the surface of their nearest neighbors.

We used stochastic global optimization to predict the lowest energy structure of a small

subset of colloids used in larger scale Monte Carlo simulations. This reflects the most ther-

modynamically stable structure in the limit of T ∗ → 0. Specifically, we used basin-hopping1,2

as implemented in the SciPy library3 for Python.4 Details are provided in the main text.

Figure S1 depicts the results for a size-symmetric system (σA,A = σB,B = 1.00) of six blue

“A” colloids and six red “B” colloids. As twelve total colloids were deemed too few to reli-

ably determine large scale morphologies, we classified structures which formed an underlying

hexagonal lattice, regardless of its compositional order, simply as being six-fold rotationally
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symmetric unless the resulting structure phase separated into two different domains (phase-

separated hexagonal). Representative configurations of the structures corresponding to the

global minimum in energy found are shown in the figure. We considered various cases where

λi,j ∈ [1.0, 0.5, 0.1, 0.0,−0.1,−0.5,−1.0]. We plot the data here in terms of the average cohe-

sive energy, (λA,A + λB,B)/2, versus the adhesive energy, λA,B. Linear discriminant analysis

(LDA)5,6 was used to identify this lower dimensional subspace where the morphologies col-

lapse into separate contiguous domains. Moving counterclockwise about the origin of Fig. S1,

these domains reflect a transformation of the system from a disordered state, to a string-like

aggregate (two-fold rotational symmetry), to a square lattice (four-fold rotational symme-

try), to hexagonal crystals (six-fold rotational symmetry). This transformation is further

discussed in the main text, however, we emphasize that this two-dimensional phase space is

effective at representing this data only when all non-phase-separated six-fold lattices, such

as honeycomb and mixed hexagonal, are considered as part of the same class. To distinguish

these structures from one another, an additional degree of freedom is required, necessitat-

ing the three-dimensional phase space, 〈λA,A, λA,B, λB,B〉, used in the main text. When the

system is size-asymmetric, classifying resulting structures is less trivial, which is consistent

with the complex domain shapes and locations corresponding to different morphologies, also

depicted in the main text. Hence, simple linear data transformation techniques, such as LDA

or principle component analysis, did not provide any meaningful collapse of the optimized

structure data into a lower dimensional subspace.
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Mean-Field Model

In our mean-field model we considered ten possible candidate morphologies which are given in

the main text along with the relevant parameters for computing their potential energy. With

this, we predicted the most thermodynamically stable morphology in the limit of T ∗ → 0

for size-symmetric systems (σA,A = σB,B = 1.00). Examples of most of the structures con-

sidered may be found in the main text with the exception of the alternating hexagonal layer

morphology, which is depicted in Fig. S2 for reference. In the main text, we presented the

mean-field model’s predictions of the most stable structure when this morphology was ne-

glected from our analysis. The reason was that this structure was not broadly observed

in simulations at a finite temperature. Instead, the mixed hexagonal lattice was generally

found. Figure S2 illustrates the mean-field model’s predictions when this morphology was

included. Comparatively, this alternating hexagonal layer morphology (gray region) gener-

ally tends to simply replace the mixed hexagonal lattice domain (green region in main text)

in 〈λA,A, λA,B, λB,B〉 phase space without significantly affecting the other domains. Thus, it

is clear that the mixed hexagonal lattice tends to have the second lowest energy, next to

the alternating hexagonal layer morphology, in that region of phase space. However, while

the latter is expected to be the most stable structure in the limit of T ∗ → 0, at finite tem-

perature entropy will contribute to the free energy of each structure. The mixed hexagonal

lattice, which is much more substitutionally disordered, is expected to have a higher en-

tropy than the alternating hexagonal layer structure; this is apparently enough to cause the

mixed hexagonal lattice morphology to dominate this region of phase space at the conditions

reported in the main text (T ∗ = 0.10).
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Figure S2: Mean-field predictions for a 1:1 stoichiometry. (Left) Depiction of the alternating
hexagonal layer morphology. (Right) Domains of predicted stability when all morphologies
discussed in the main text are considered. Red corresponds to the phase-separated hexagonal
structure, yellow to an alternating square lattice, blue to a honeycomb lattice, and the
cyan dots to a disordered “gas” phase located precisely along the λA,B = 0 plane when
λA,A, λB,B ≤ 0.
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The Kagome Lattices as Defects

We also considered two polymorphs of the trihexagonal tiling known as the kagome lattice in

our mean-field approach: the more conventional one, which we simply refer to as “kagome,”

and the “square-kagome” lattice. Both are depicted in Fig. S3. We did not observe these

structures forming globally in our Monte Carlo simulations at a 1:1 stoichiometric ratio,

which is consistent with the fact that this structure never manifests as the lowest energy

structure out of all the candidate morphologies in our mean-field model. However, we did

find that toward the low λA,B edge of the honeycomb (blue) regions, the lattice tended to

display defects. The propensity of these defects increased as we reduced the temperature

of the Monte Carlo simulations from T ∗ = 0.10 → 0.05, but the overall morphology we

continued to observe was still honeycomb. We attribute these defects to difficulty in sampling

at lower temperature. These defects generally resulted in local kagome structures within the

honeycomb lattice which formed. As shown in Fig. S4(a), a point defect in a honeycomb

lattice results in a kagome structure around that defect. Furthermore, when a twinning plane

develops from, for instance, layers sliding past one another, the structure across the plane is

locally a square kagome lattice. Such a plane is shown in Fig. S4(b). The similarity of the

kagome lattices with the honeycomb is clearly reflected in their nearly identical coordination

numbers (cf. main text). Thus, although the kagome lattices were never found to be the

most stable structure for a 1:1 stoichiometric ratio, it is possible that these structures may

be observed in a similar region of phase space due to kinetic limitations.
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Figure S3: (Left) Kagome lattice composed of two species, “A” (blue) and “B” (red). (Right)
Square kagome polymorph with the same constituents. The white lines depict the local
coordination numbers and how these polymorphs are made of smaller subunits which tile
two dimensional space differently.

Figure S4: Honeycomb lattice with (a) a point defect showing a locally kagome structure and
(b) a twinning plane across which the crystal manifests as a locally square kagome lattice.
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Size Asymmetry for 1:1 Stoichiometry

Figure S5: Regions of phase space where each morphology appears in Monte Carlo simula-
tions of size-asymmetric colloids when σA,A = 1.00, σB,B = 0.40, with corresponding repre-
sentative snapshots from each. The disordered “gas” and phase-separated hexagonal regions
have been neglected as their morphologies are qualitatively identical to the size-symmetric
case (σA,A = σB,B = 1.00). A fully reconstructed three-dimensional phase space is presented
in the main text.

8



Figure S6: Regions of phase space where each morphology appears in Monte Carlo simula-
tions of size-asymmetric colloids when σA,A = 1.00, σB,B = 0.14, with corresponding repre-
sentative snapshots from each. The disordered “gas” and phase-separated hexagonal regions
have been neglected as their morphologies are qualitatively identical to the size-symmetric
case (σA,A = σB,B = 1.00). A fully reconstructed three-dimensional phase space is presented
in the main text.
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Molecular Dynamics Simulations

Figure S7: Representative results from molecular dynamics simulations for a size-symmetric
system at 1:1 stoichiometry showing each morphology found. (a) λA,A = −0.5, λB,B = 0.5,
λA,B = 0.5 (Honeycomb lattice), (b) λA,A = −0.5, λB,B = −0.5, λA,B = 0.75 (Alternating
square lattice), (c) λA,A = 0.5, λB,B = 0.5, λA,B = 0.25 (Phase-separated hexagonal lattice),
(d) λA,A = 0, λB,B = 0, λA,B = 0.75 (Mixed hexagonal lattice), (e) λA,A = −0.5, λB,B =
−0.5, λA,B = 0.25 (Disordered “gas”), (f) λA,A = −1, λB,B = −1, λA,B = 0.5 (Alternating
string-like aggregate).
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