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This supplementary information is arranged as follows.
In Sec. I, we describe the methods we used to obtain the
static length scale ξs. In Sec. II, we report some as-
pects (e.g. size of the impurity particles) of the effects of
the chosen impurity particles. In Sec. III, we present a
new argument, based on our obtained values of the pin-
ning susceptibility, about the possibility of an ideal glass
state at some critical value of the pinning concentration.
We also outline a new explanation of the scaling form of
τα(c, T ) on pinning concentration c used in Refs. [1] and
[2]. The arguments are based on the non-singular depen-
dence of the peak height of the pinning susceptibility on
the pinning concentration. Finally in Sec. IV, we discuss
the dependence of χp(t) on the choice of δc.

I. METHODS OF CALCULATING THE STATIC

LENGTH SCALE, ξs

Although there is a consensus on the existence of a
static length scale in supercooled liquids that grows as
the temperature is lowered, obtaining it may be quite
challenging. In this work, we have used the following
three methods to obtain the static length scale.

A. Point-To-Set Method:

The point-to-set (PTS) length scale was introduced by
Bouchaud and Biroli in Ref. [3] and it was numerically
calculated for the first time in Ref. [4] in a model bi-
nary glass former. This method is useful at somewhat
high temperatures when the length scale is not too large.
The main difficulty comes from the dynamical procedure
involved in calculating this length scale. In the PTS
method, one needs to take an equilibrated configuration
at a given temperature and then define a smaller spheri-
cal region of radius, R. The particles outside this spher-
ical cavity are pinned at their respective positions and
only the particles inside the cavity are allowed to evolve
according to Newtonian dynamics. The static overlap
correlation is calculated for the particles inside the cav-
ity and in order to remove boundary effects the static
overlap is calculated only for those particles which are
in the center of the cavity. This procedure is repeated
for many different sizes of the cavity and the size depen-
dence of the static overlap is obtained to finally extract
the point-to-set length scale.
The external pinned boundary makes the dynamics of

the internal particles very slow especially for small cav-

ities and one needs to employ a sophisticated sampling
method (Swap Monte Carlo Method [5]) to partly over-
come this difficulty. As this enhanced sampling method is
not generically applicable to any model system, the sam-
pling problems are not always easy to overcome [6] espe-
cially at lower temperature. In this study we have used
PTS methods only at those temperature regime where it
can be done within accessible computation time. Some
of the PTS length scale reported in this work are taken
from Ref. [2].
In Ref. [7], it was claimed that the PTS method fails to

capture the relevant static length scale in a weakly poly-
disperse system where the relevant static length scale is
the one associated with hexatic ordering. It raised ques-
tions about the usefulness and validity of PTS length
scale in measuring the right static length scale in the
problem. In Ref. [8], it was shown that if one takes in
to account the fluctuations due to the polydispersity and
the packing fraction in the cavities, especially for poly-
disperse system, then one indeed finds the PTS length
scale to be the same as the hexatic length scale. We
therefore believe that the PTS still captures the right
static length scale and it is still order agnostic. We have
also shown that for different binary model systems where
there are predominant hexatic order upon supercooling,
PTS length scale unambiguously picks up the relevant
hexatic length scale. It is important to note that al-
though in Ref. [8] a possible resolution to the claimed
failure of PTS method for measuring the relevant static
length-scale for model systems with medium range crys-
talline order have been suggested, a complete theoretical
understanding for the same is still not available.

B. Finite Size Scaling of Minimum Eigenvalue:

The second method is the finite-size-scaling of the min-
imum eigenvalue of the Hessian matrix corresponding to
an inherent structure of the supercooled liquid at a given
temperature [9]. This method is expected to work in
the low temperature regime where the supercooled liq-
uid spends a considerable amount of time around a given
minimum of its free energy landscape and a harmonic ap-
proximation works for a finite (but short) time. We will
briefly describe the method here. Please refer to Ref. [9]
for the details of this method.
Karmakar et. al. in [9] argued that the minimum eigen-

value λmin(T ) of the Hessian matrix obtained at the in-
herent structure closest to the configuration of a super-
cooled liquid at given temperature T takes the scaling
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FIG. 1: Top Panel: Finite size effects of τα for the 3dKA model and the corresponding data collapse to obtain static length
scale ξs shown in the next panel. Similar analysis done for 2dR10 model (middle panel) and 2dmKA model (bottom panel) are
also shown. In all these case scaling collapse observed to be very good.
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λD(T ) is the square of the Debye frequency, d is the di-
mensionality of space, A is an adjustable constant chosen
to get the best scaling collapse and F is an unknown scal-
ing function. In Ref. [9], the validity of this method was
demonstrated for a few model glass forming liquids and
later in Ref. [10] it was shown that the temperature de-
pendences of the PTS and minimum eigenvalue length
scales are the same for various generic glass forming liq-
uids. Recently in Ref. [11], this method was used to ob-
tain the static length scale for a glass forming liquids for
which equilibrium state can be relatively easily sampled
using the Swap Monte Carlo technique. A large change
in length scale was reported in that work.

C. Finite Size Scaling of α-relaxation time

The third method we use is the finite-size-scaling of
the α-relaxation time, τα. The α-relaxation time of su-
percooled liquids shows a strong system size dependence.
It decreases monotonically with increasing system size
before attaining its asymptotic value at the thermody-
namic limit. In Ref. [12], it is shown that the finite
size effect observed in relaxation time can be rational-
ized from the finite size effect of configurational entropy
via Adam-Gibbs relation. It is also shown that the finite
size dependence of four-point dynamic susceptibility and
relaxation time are controlled by two different length-
scales. As configurational entropy is a static quantity,
one expects that the length-scale that controls the finite
size effects of it will be a static length-scale. Thus it is
natural to expect that the length-scale obtained from the
finite size scaling analysis of α-relaxation time will also
be a static length-scale. The following scaling form is
used to obtain it.

τα(N, T )

τα(∞, T )
= G

(

N

ξds (T )

)

. (2)

G(x) is an unknown scaling function. The infinite sys-
tem size relaxation time τα(∞, T ) and the static length
scale ξs(T ) are chosen so as to get a good data collapse
when τα(N, T )/τα(∞, T ) is plotted against N/ξds (T ) for
all temperatures on the same graph. In Fig. 1, we have
shown such data collapse to obtain the static length scale
for some of the studied systems. In Ref. [13], it is
demonstrated that the length scale obtained from the
FSS analysis of τα is indeed the same as the length scale
obtained using PTS and FSS of minimum eigenvalue
method. For an in-depth discussion on the importance
of various length scales in the dynamics of supercooled
liquids see, e.g., Refs. [13] and [14].

II. CHOICE OF THE SOLUTE PARTICLES

0.5 1 1.5 2
T

0

1

2

3

4

5

ξ s(T
)

σ
CC

 = 1.20

σ
CC

 = 1.30

σ
CC

 = 1.40

σ
CC

 = 1.60

FIG. 2: Effect of the size σCC of added solute particle (C
Ttype) for the 2dmKA model. σCC = 1.20 is used in the
main article. Here we report data for σCC = 1.3, 1.4, 1.6.
The temperature dependence of χp is independent of the size
of C type particles within this studied range.

In Fig. 2 we establish that in the limit of dilute impuri-
ties, the size of the impurity particles does not affect the
value of the length scale calculated (via χp). In Fig. 3,
we establish that the solute particles indeed diffuse slower
than the rest of the liquid particles showing that they can
be thought of as a milder version of pinned particles. At
lower temperatures diffusion constants of the solute par-
ticles are more than an order of magnitude smaller than
the solvent particles.

III. A NOTE ON THE POSSIBLE IDEAL GLASS

TRANSITION WITH RANDOM PINNING

If there is an ideal glass transition as a function of
the pinning strength, the pinning susceptibility must di-
verge for all times larger than some finite time for that
value of the pinning strength. This can be proven as fol-
lows. Suppose, the ideal glass transition takes place at
c = c0(T ) at temperature T . In that case, at tempera-
ture T and pinning fraction c0(T ), the overlap correlation
function must not decay to zero at any finite time. Thus,
Q[c0(T ), T, t] > 0 for all t. However, for a slightly lower
pinning fraction, the overlap correlation function must
decay to zero at some finite time. Therefore, there must
exist a time-scale t0(δc) such that Q[c0(T )− δc, T, t] = 0
for all t > t0. Thus, the pinning susceptibility χp must
be infinite for all t > t0. It must be noted that the
time-scale at which χp diverges must be shorter than the
α-relaxation time of the system for any finite δc > 0 with
t0(0) >∼ τα → ∞. From top panel of Fig.4, it is clear that
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FIG. 3: Top panel: Comparison of diffusion constants of sol-
vent particles (A or B type) with that of solute particles (C
type) that are added to mimic the pinning effect. The results
are for 3dR10 model. One can clearly see that diffusion con-
stant of C type particles are more than an order of magnitude
smaller than the solvent particles. Bottom panel: Ratio of the
two diffusion constants.

χmax
p (T ) shows no tendency to diverge even when higher

and higher pinning fraction data are considered. This
gives us a compelling evidence against the possibility of
achieving an ideal glass state by just increasing the num-
ber of pinned particles in a system. In the bottom panel
of Fig. 4, we have shown the variations of peak heights
with increasing concentrations of larger third particles
for the ternary 2dR10 model to demonstrate the similar-
ity with the pinning susceptibility for random pinning.
This clearly shows that peak value of pinning suscepti-
bility does not depend on the pinning concentrations or
amount of third particles in the case of ternary models.
Similar results are obtained for other model systems also.

At pinning concentrations which are significantly
higher than those considered in this work and other stud-

ies on random pinning present in the literature, the sys-
tem goes in to a phase known as the Lorentz gas which is
nothing but diffusive motion of particles in a medium
with a high concentration of random obstacles or in
porous media. Such systems have been studied in Refs.
[15, 16]. In this regime of pinning concentration all our
analysis breaks down.

IV. DEPENDENCE OF χmax
p (T ) ON δc

In this section, we check the dependence of χmax
p for

various temperatures on the choice of δc used while cal-
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FIG. 4: Top panel: The variation of pinning susceptibility
with time for various pinning fractions for the 3dKA model
with 2000 particles at T = 0.80. Bottom panel: The variation
of pinning susceptibility with time for various concentrations
of third particles for the ternary version of 2dR10 model with
1000 particles at T = 0.60 with δc = 0.01.
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FIG. 6: Left panel: Comparison of Static and Dynamic length-scale for 2dR10 model in the studied temperature range. Right
Panel: Same comparison for 3dKA model. One can clearly see that temperature dependence of static and dynamic length-scales
are very different for these models in which there is no prominent medium range crystalline order. The scales are known up to
a scale factor, so the data for both the length-scales are matched at the highest studied temperature.

culating χmax
p via numerical differentiation. In Fig. 5,

we have plotted χmax
p using different values δc for our

model systems. One can clearly see that the peak height
does not depend explicitly on the choice of δc as long as
it is small. This also directly establishes the robustness
of our results based on the proposed susceptibility.

V. DECOUPLING OF STATIC AND DYNAMIC

LENGTH-SCALES

In some recent works [7, 17, 18], it is suggested that the
static and dynamic length-scale are same or proportional
to each other. In Ref. [8], it is shown that this conclu-

sions are true only for system with predominant medium
range crystalline order (MRCO) and static and dynamic
length-scales decouple from each other for other generic
glass forming liquids with not prominent crystalline or-
der. In Fig.6, we have shown the temperature depen-
dence of static and dynamic length-scales for two models
systems 2dR10 and 3dKA in the studied temperature
ranges. These two models do not show detectable growth
of medium range crystalline order with decreasing tem-
perature. It is clear that the dynamic length-scale grows
much faster than the static length-scale at least in the
studied temperature range and their temperature depen-
dence is completely decoupled from each other. Please
see Ref.[8], for further details.
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