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Elastic constants and Poisson’s ratio

The strain tensor in Parrinello and Rahman method1 is defined as

ε ≡ 1

2

(
H−1hhH−1 − I

)
, (1)

where h is the box matrix tensor, H is the reference box matrix under pressure p∗ and I is

the unit matrix. Elements of the elastic compliance tensor are defined as follows:2

Sijkl = βVp 〈∆εij∆εkl〉 , (2)

where Vp is the average volume at the pressure p, ∆εij = εij − 〈εij〉 and 〈...〉 denotes the

thermodynamic averaging in the NpT ensemble.

As it has been mentioned in main text, it is convenient to use matrix notation in Voigt’s

form3 and the regular symmetry of fcc lattice causes that we have only three independent

elastic constants. These elastic constants can be calculated using compliances S11, S12 and

S44 in following way:

C11 =
S11 + S12

(S11 − S12)(S11 + 2S12)
+ p , (3)

C12 =
−S12

(S11 − S12)(S11 + 2S12)
− p , (4)

C44 =
1

S44

+ p . (5)

The Poisson’s ratio in the main crystallographic directions for regular symmetry of crystal
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can be expressed as a function of the elastic constants (Cij):4

ν[100] =
C12 + p

C11 + C12

, (6)

ν[111] =
C11 + 2C12 − 2C44 + 3p

2(C11 + 2C12 + C44)
, (7)

ν[110][001] = − 4(C12 + p)(−C44 + p)

C2
11 − 2C2

12 + C11(C12 + 2C44 − 3p)− 5C12p− 2C44p
, (8)

ν[110][11̄0] =
C2

11 − 2C2
12 − 5C12p+ 2(C44 − 2p)p+ C11(C12 − 2C44 + p)

C2
11 − 2C2

12 + C11(C12 + 2C44 − 3p)− 5C12p− 2C44p
. (9)

Versor n̂

The versor n̂ is determined by spherical coordinates θ, φ as it shown in the figure 1. In

the main text, n(θ, φ) represents the direction of applied stress, whereas m(α) describes the

direction of measurement of Poisson’s ratio.

Figure 1: Representation of n̂ and m̂ in spherical coordinates. m(α) is lying in the plane
perpendicular to n̂. The angle α is to be measured counterclockwise starting from the
direction m̂1 lying in the plane OXY .
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Figure 2: Poisson’s ratio in the auxetic direction ([110][11̄0]) versus rcut. By horizontal lines
are marked the results obtained for rcut = 2.5σ̄. The insert represents the pair potentials for
two reference particles with σ̄ for three Yukawa potentials with the longest screening length
considered in this study.

Simulation details

Each simulation run was started from a perfect fcc structure, in which diameters of hard-

core was taken from Gaussian distribution with a given polydispersity, δ. Simulations for

each studied phase point were performed for at least 10 different, independent structures

fulfilling the conditions described in Ref.5 After that the elastic compliances were calculated

by averaging over all different structures. More details of preparation of polydisperse sample

can be found in Ref.5 The typical length of simulation run took 6× 106 MC cycles, of which

the first 106 cycles were devoted to equilibration of the system.

The following reduced quantities have been used in this paper: the density ρ = ρ∗σ̄−3,

the pressure p = p∗ kBT
σ̄3 , potential energy E = E∗kBT , elastic moduli Cij = C∗

ij
kBT
σ̄3 , elastic

compliance Sij = S∗
ij

σ̄3

kBT
where by the star (’∗’) denoted dimensionless quantities. The

interaction between the particles was truncated at rcut = 2.5σ̄ and long-range corrections to
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Figure 3: Elastic constants C∗
ij ploted with respect to polydispersity parameter for studied

values of scrrning lenght and contact potential.

the energy have been taken into account. The choice of such rcut = 2.5σ̄ follows from the

fact that the inter-particle interaction potentials discussed in this paper are of short-range,

see the insert in Fig. 2. This choice is quantitatively confirmed by the dependencies of the

Poisson’s ratio on rcut in the auxetic direction which are shown in Fig. 2. One can see there

that in both cases with the longest screening length, the results obtained for rcut = 2.5σ̄ are

in very good agreement with those obtained for longer rcut.

Elastic constants vs particle size polydispersity

The effect of polydispersity on elastic properties can be observed in the dependencies of

C∗
ij(δ) for different parameters of Yukawa potential (see Fig. 3). Most essential changes can

be seen for the elastic constant C∗
44 at the shortest screening lengths. From the equations

(6)–(9) it is following these changes are reflected directly in the values of the Poisson’s ratio

(Fig. 4). In the figure one can observe an increase of Poisson’s ratio in the directions of [100],

[111], and [110][001] with increasing of the polydispersity parameter δ.
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Figure 4: Poisson’s ratios ν[100] (a), ν[111] (b), ν[110][001] (c) as a function of polydispersity for
p∗ = 60 and different values of Yukawa parameteres. The legend is the same as in Fig. 3a.

Influence of temperature on auxeticity

All obtained results in this study are given in terms of so-called Yukawa parameters. Another

representation of any Yukawa phase point is the (λ, T̃ ),6,7 where T̃ is the dimensionless

temperature which is given by7

T̃ =

[
2

3
λ2βuM(λ)

]−1

, (10)

and uM is the Madelung energy per particle in an ideal fcc crystal. λ = κσ̄(6η/π)−1/3 is a

scaled Debye length where η is the packing fraction. Using this representation one can cal-

culate the dependencies of Poisson’s ratio in the auxetic direction (for various polydispersity

parameters) on temperature which are shown in Fig. 5. One can observe that an increase of

temperature enhances auxeticity of the system.

Auxeticity of the system

Let us consider an ideal auxetic for which νideal = −1 and try to visualize it in a three-

dimensional plot. We assume that a vector from the origin of the coordinate system points

to some point. A direction of the vector represents the direction of the applied stress (n̂),
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Figure 5: Temperature dependencies of Poisson’s ratio in the [110][11̄0]-direction at p∗ = 60
and κσ̄ = 10 for different values of polydispersity parameter.

and its modulus has the value of the average auxeticity in that direction (average value of

the integral of the auxetic area, see Fig. 6a). Thus, the ideal auxetic will be described by a

sphere of radius rideal = |νideal| = |−1| = 1 and volume Aideal = 4π/3, which we will call ideal

auxeticity(see Fig. 6b). In the case of the studied auxetic, the application of the procedure

described above will lead to a complicated geometric shape (Fig. 6d) with a volume of A,

which can be referred to volume of a sphere of radius rs (Fig. 6e). Then, the ratio of the

radius of these spheres will determine the degree of auxeticity of the given system, namely:

χ =
rs
rideal

=
3
√

3A/4π
3
√

3Aideal/4π
=

3

√
3A

4π
, (11)

where

A =

2π∫

0

dφ

π∫

0

sin θdθ

R(θ,φ)∫

0

r2dr , (12)

7



Figure 6: (a) An average negative Poisson’s ratio of ideal auxetic. (b) 3D representation
of the auxetic properties of the ideal auxetic. (c) The Poisson’s ratio with respect to the
direction of measurement (designated by α). The shaded area is the measure of the average
negative Poisson’s ratio of the studied system (Eq. (13)), (d) Representation of the auxetic
properties of the studied system in spherical coordinates. The surface consists of the points
which created by R(θ, φ). θ, φ define the direction of n̂. R(θ, φ) corresponds to the mean
value of Poisson’s ratio νn̂(α) in the direction of applied stress (n̂). (e) A sphere of volume
of A equal to volume of geometric shape shown in Fig. (d).
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and the average over negative values of Poisson’s ratio (Fig. 6c) in the direction of n̂ is

R(θ, φ) =
1

2π

π∫

0

(∣∣νn(θ,φ)(α)
∣∣− νn(θ,φ)(α)

)
dα . (13)
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