Supporting Information

Superhydrophobic, highly adhesive arrays of copper hollow spheres produced by electro-colloidal lithography

Damien Bazin§, Chrystel Faure**.
§Université de Bordeaux, Centre de Recherche Paul Pascal, Avenue du Dr Schweitzer, 33600
Pessac, France

* Université de Bordeaux, Bordeaux INP, Chimie et Biologie des Membranes et Nano-objets, Allée Geoffroy St Hilaire, 33600 Pessac, France
* E-mail: chrystel.faure@enscbp.fr, Phone number : 0033540006833

Experimental section and methods

Cu^{2+}-loaded spherulites production
Cu^{2+}-loaded multi-lamellar vesicles (MLVs) were prepared by mixing an equal amount of a 0.68 mol.L. ${ }^{-1} \mathrm{CuSO}_{4}, 5 \mathrm{H}_{2} \mathrm{O}$ (Sigma-Aldrich) solution with GenaminT020 (GT020, Hoechst, Frankfurt, Germany). GT020 is a surfactant that self-organizes into a lamellar phase in the cupric aqueous solution. Under shear, the lamellar phase turns into a dense MLV phase. Cupric ions are trapped inside MLVs by chemical affinity to the GT020 polar headgroup. Here, shearing was produced by a simple mixing of the $\mathrm{GT} 020-\mathrm{CuSO}_{4}$ mixture using a spatula. After c.a. 5 min . mixing, the paste was centrifuged for 5 min at 3000 rpm and both steps were repeated until the sample color was homogeneously blue. Dispersions of MLVs ($500 \mathrm{mg} / \mathrm{mL}$) in distilled water were prepared by gentle mixing with a mechanical stirrer (500 rpm).

2D planar electrochemical cell fabrication

ITO electrodes (Delta Technologies Limited, $70-100 \Omega$) were first treated to decrease surface roughness by plunging them into a KOH -saturated isopropanol solution for 24 hrs . Then, electrodes were sonicated in a bath containing a Hellmanex® solution (Sigma, dilution 1:50 $\mathrm{v}: \mathrm{v}$) for 1 hr before rinsing with distilled water, ethanol and acetone. After drying, both electrodes were separated by a $250 \mu \mathrm{~m}$ circular silicon spacer (Goodfellow, Lille, France), delimiting a $2 \mathrm{~cm}^{2}$ working surface. The silicon joint was cut to let two apertures by which particles dispersions are introduced.

2D assembling of functionalized PS beads under AC field

Sulfate-modified PS beads (Polysciences, Eppelheim, Germany) dispersions were introduced into the cell and let to rest under an AC field $(5 \mathrm{kHz}, 120 \mathrm{~V} / \mathrm{cm})$ to allow particle sedimentation (c.a. 30 min). Then, the frequency was continuously decreased down to 2 kHz by 1 kHz step, then down to 800 Hz , every 2 minutes. For this frequency, particles formed distended
aggregates (no contact between particles). Then, frequency was increased to a final frequency of 1200 Hz by 200 Hz step every 2 min . This step led to a separation of the particles that formed "disordered" hexagonal arrays. The organization was drastically improved by a rise in AC field amplitude from $120 \mathrm{~V} / \mathrm{cm}$ to $290 \mathrm{~V} / \mathrm{cm}$ by $10 \mathrm{~V} / \mathrm{cm}$ step every 2 min .

Organized particles were then stuck onto the electrode using a DC generator connected in parallel to the AC power supply (Hewlett Packard, 3324A). The sticking electric field value was set to $90 \mathrm{~V} / \mathrm{cm}$ was applied during 5 min .

PS beads were removed with tetrahydrofuran (THF, Sigma-Aldrich) after opening the cell.

Surface characterization

The morphology of the metal deposits was examined by a SEM (HITACHI S4500, V= 15 kV) microscope. For bowls imaging, the patterned surfaces were tilted $\left(30^{\circ}\right)$ in order to visualize ring-shape excrescences. Atomic Force Microscopy (AFM) (Nanoscope III, Digital Experiment) imaging was performed in tapping mode with a silicon tip.

Static contact angle

Static contact angle was measured using a contact-angle meter (Kruss, GmbH). Deionized water was used for experiments. A micropipette is located to approximately 2 cm above the sample, and an $8 \mu \mathrm{~L}$ drop is dispensed onto the sample surface. The measured contact angle was the average of five measurements.

S1: XPS analysis of patterned surfaces

The two peaks located at 935,1 and $932,6 \mathrm{eV}$ correspond to copper oxide $\mathrm{Cu}(\mathrm{II})$ and metal copper $\mathrm{Cu}(0)$, respectively.

Platzman, I.; Brener, R.; Haick, H.; Tannenbaum, R. The Journal of Physical Chemistry C 2008, 112, 1101.

S2: imaging of copper"rings" covered surfaces

SEM analysis

Before removing PS beads

After removing PS beads using THF:

S3: imaging of copper hollow spheres covered surfaces

SEM analysis

Before removing PS beads:

After removing PS beads :

S4: Hollow sphere imaged by AFM

S5: mathematical model

From Pythagore law, one can express x as a function of R_{b}, the radius of PS beads, and H, the global height of copper deposit (Figure 3c):

$$
\begin{equation*}
x=\sqrt{R_{b}^{2}-\left(R_{b}-H\right)^{2}} \tag{1’}
\end{equation*}
$$

In our experimental conditions:
$\mathrm{R}_{\mathrm{b}}=1000 \mathrm{~nm}, \mathrm{~d}_{\mathrm{CC}}=3700 \mathrm{~nm}, \delta=537 \pm 47 \mathrm{~nm}$ as measured by AFM.
Moreover, H is directly correlated to h, the height of the excrescence. Indeed $\mathrm{H}=\mathrm{h}+\mathrm{H}_{\mathrm{Cu}}$ where H_{Cu} is the thickness of the copper layer in between the copper items (Figure 3c). In a previous paper, ${ }^{[39]}$ the following relationships were established:

$$
\begin{align*}
& \mathrm{H}=10.7+5 \mathrm{t}_{\mathrm{DC}} \tag{2’}\\
& \mathrm{H}_{\mathrm{Cu}}=-1.07+1.28 \mathrm{t}_{\mathrm{DC}} \tag{3'}
\end{align*}
$$

with t_{DC} the duration of DC field application.
Combining Equation 2' and Equation 3' gives:

$$
\begin{equation*}
\mathrm{H}=-3.81+1.26 \mathrm{~h} \tag{4’}
\end{equation*}
$$

Then introducing Equation 4' in Equation 1' leads to Equation 3 of the manuscript.

