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The mass in grams of polymer in a microgel at the
reference state is M = Vppopp, and the total number of
monomers is given by Nyy = M N4 /My where M is the
mass of the cross-linker. The number of crosslinks in the
microgel is then Noj, = Ny f and since each cross-linker 0 0 3 aw s 0 20 3w s
molecule generates two chains, the number of chains in o0 Tea o Tea
a microgel particle is N, = 2N¢gp,. The prefactor to the Minami et al
elastic term in equation 4 of the main text is then
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This prefactor to for PNIPAM in water, cross-linked
with BIS (¢, = 1.1 g/mL, My x Ny = 113g and v, = 18 10 20 0 4 50 10 2 0 4w s
mL) reduces to: " T
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A spreadsheet calculating ¢ and Ry as a function ¢y,
0, A, C and D is provided.
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Il.  FLORY-RHENER FITS TO LITERATURE T e
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Figure S1 shows Flory-Rehner fits to the datasets con-
sidered in Table 1 of the main manuscript. Figure S2
shows fits of the Flory-Rehner model to the two samples 200
with lowest cross-linking densities of reference [1] leav-
ing ¢g as a free parameter. The fit parameter values for
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these are presented in Table 1 of the main text in brack- - 30 a 50 ‘0 2 a0 50
ets. The microgel of Acciaro et al prepared by the feeding Tea Tea
method and the sample of Arleth et al are reported to be 500 Kureha et al

uniformly cross-linked.
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1.  FITS WITH VARYING f

Fit results to the datasets by Senff and Richtering!
were considered in the main manuscript using the cross- 2 g 50
link density calculated from synthesis fqyn,. Figure S3

FIG. S1. Fits to different datasets from references [2-9].
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* Not really shows the best fit parameters obtained when f is fixed
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FIG. S2. Fits to datasets of Senff and Richtering, degree of
cross-linking indicated on the graphs. The value of ¢o (see
Table I of the main text) corresponds to the best fit value for
each dataset.

at different values.

If f ~ 0.3fsyn is used, C' and D are approximately
independent of cross linking density and A approaches
the range expected from equation 5 (although its still
~ x 5 larger). The effective value of f may be ex-
pected to be lower than the nominal one, as explained in
the main manuscript due to non-uniform cross-linking.
However, analysing the data of Arleth et al, for which
the cross-linking is approximately uniform, we again find
f ~0.05fy, is required to obtain a value of A ~ —0.3.
Given that in this case cross-linking is homogeneous, this
would require that some 95% of the cross-linker remain
unreacted. It seems more likely that the affine network
model overestimates the elastic contribution of network
strands, which therefore leads to reasonable fit parame-
ters for x when an artificially low value of f is used.

Acciaro’s data show that homogeneously cross-linked
samples swelll to a greater degree than heterogeneously
cross-linked ones, which would therefore require a higher
value of f to be used for the data considered in the main
text, resulting in greater disagreement between fit values
of A and independent estimates from equation 5. The fit
to the homogeneously a cross-linked sample prepared by
Acciaro et al confirms this with a value of A ~ —5.
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FIG. S3. Fit results to dataset by Senff and Richtering. Best
fit values of A, C, D and ¢o as a function of chosen value
of f divided by the nominal value of f. Different symbols
correspond to the different nominal cross-linking values: f =
0.05 (O), f =0.029 (4), f =0.014 (¢), f =0.006 (A).
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FIG. S4. [Ri(25° C)/Ru(40° C)]/(0.966f°2) as a function
of different parameters. cs is the total monomer concentra-
tion at synthesis in wt/wt. Note this is not the same as the
polymer concentration inside a microgel particle.

IV. EFFECT OF SYNTHESIS ON SWELLING
PROPERTIES

Figure S4 shows the relative deviation between
Ry (25)/Rp(40) data and the best fit equation
Ry (25)/Ri(40) = 0.966f7°2, as a function of differ-
ent parameters. No systematic deviations are found with
any of the parameters considered.
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