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1 Eulerian kinematics and conservation of volume

The diffusion-driven expansion of the polymer network will cause a material element that is originally

located at a point Z to be displaced by an amount u to a new position z. In an Eulerian framework,

this displacement is written as

u(z, t) = z − Z(z, t). (1)

In physical terms, (1) describes how far the material element that is currently located at point z at

time t has moved from its initial position given by Z(z, t). The time dependence of Z reflects the fact

that different material points can pass through the same Eulerian coordinate z as t increases. The

initial polymer network is assumed to be undeformed, u(z, 0) = 0. Due to symmetry considerations,

the displacement at the centerline must be equal to zero. Furthermore, the displacement at the surface

must be equal to the difference between the current and initial (half) thickness of the layer. Thus, the

boundary conditions for u are given by

u(0, t) = 0, u(h(t), t) = h(t)− h(0). (2)

The deformation of the polymer network is conveniently described by the local stretch, λ, which charac-

terises the degree of expansion (λ > 1) or shrinkage (λ < 1) that a material element has undergone. In

an Eulerian framework, the local stretch is defined as λ ≡ (∂Z/∂z)−1 and, by using (1), can be written

as

λ =

(
1− ∂u

∂z

)−1
. (3)
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By inverting (3) for the strain ∂u/∂z, integrating across half of the layer (i.e., from z = 0 to z = h(t)),

and imposing the boundary conditions (2), an implicit relationship between the half-thickness of the

layer h and the local stretch can be obtained,

h(t)− h(0) =

∫ h(t)

0

(1− λ−1) dz. (4)

From a physical standpoint, (4) represents global conservation of volume for the polymer network. Due

to the local incompressibility of the monomer and polymer network, the local stretch is linked to the

volume fraction of monomer via

λ =
1

1− φm
, (5)

which represents the local conservation of volume. Using (5) in (4) shows the intuitive result that the

net expansion of the polymer network is equal to the total volume of absorbed monomer:

h(t)− h(0) =

∫ h(t)

0

φm(z, t) dz. (6)

2 Derivation of the equilibrium monomer fraction

The governing equations for the swelling of a static polymer network can be written as

∂φm
∂t

+
∂

∂z
(φmvm) = 0, (7a)

φmvm + (1− φm)vn = 0, (7b)

φm(1− φm)(vm − vn) = −ΩmD(χ)φm
kBT

∂

∂z
(µm + p) , (7c)

∂σen
∂z

=
∂p

∂z
, (7d)

where the chemical potential of monomer, effective stress, and local stretch are given by

µm = µ0
m +

kBT

Ωm

[
log φm + (1−m−1)(1− φm)

]
, (8a)

σen = G(χ)(λ− λ−1), (8b)

λ = (1− φm)−1. (8c)

Boundary conditions at the free surface are given by

σen − p = 0, z = h(t), (9a)

µm + p = µ0
m, z = h(t). (9b)

The half-thickness of the polymer network satisfies

h(t)− h(0) =

∫ h(t)

0

φm(z, t) dz. (10)

At equilibrium, the monomer and polymer velocities vanish, vm = vn = 0; the momentum balance

for the monomer (7c) implies that the total chemical potential µm + p is constant in space and, from

(9b), equal to that of the monomer bath. Thus,

µm + p = µ0
m (11)
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throughout the network. Integration of the momentum balance for the mixture (7d) and imposing the

boundary condition (9a) implies that the pressure is given by

p = σen = G(χ)
[
(1− φm)−1 − (1− φm)

]
. (12)

Using the expressions for the chemical potential (8a) and the pressure (12) in (11) yields an equation for

the equilibrium monomer fraction φeqm :

log φeqm + (1−m−1)(1− φeqm) +
G(χ)Ωm
kBT

[
(1− φeqm)−1 − (1− φeqm)

]
= 0. (13)

The equilibrium film thickness, heq, can be calculated from (10) and is given by

heq =
h(0)

1− φeqm
= λeqh(0). (14)

Equation (13) can also be obtained by minimising the total free energy E(λ, φm) =
∫ h
0
F dz under

the constraint (8c) and using (14), where F is the Helmholtz free energy density

F(λ, φm) =
1

2

G(χ)

λ

(
λ2 − 1− 2 log λ

)
+
kBT

Ωm

[
φm log φm +m−1(1− φm) log(1− φm)

]
. (15)

To carry out the energy minimisation, we first note that E can be explicitly evaluated as

E(λ, φm) = λh(0)F(λ, φm). (16)

By introducing a Lagrange multiplier θ, the minimisers of E that satisfy the constraint (8c) can be

obtained by solving

∂(λF)

∂λ
− θ = 0, (17a)

λ
∂F
∂φm

+
θ

(1− φm)2
= 0, (17b)

λ− 1

1− φm
= 0. (17c)

Elimination of θ and λ from the system yields (13).

3 Estimates of the diffusion coefficient

The dependence of the diffusion coefficient on the conversion fraction χ and the monomer temperature

T has been estimated by fitting the model (7)–(10) (equivalently, the reduced model (18) in the main

text) to the data produced from swelling experiments using static polymer networks. Numerical values

for the diffusivity D are given in Table 1, which exhibit a strong increase with temperature, as expected.

Surprisingly, the diffusivity appears to keep the same order of magnitude as the conversion fraction

is increased for fixed temperatures. The calculated values for χ = 0.85 are likely erroneous because

the model is unable to capture the linear swelling kinetics associated with case-II diffusion. While an

improved model that incorporates case-II diffusion [2, 5] might yield refined estimates for the diffusion

coefficients, we leave this as an area of future work.
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Table 1: Values for the cooperative diffusion coefficients, D, obtained by fitting the model (7)–(10) to the

swelling data for static networks. The units of D are mm2/min.

T = 21 ◦C T = 45 ◦C T = 65 ◦C

χ = 0.12 4.8 × 10−6 5.0 × 10−5 1.9 × 10−4

χ = 0.35 – – 2.5 × 10−4

χ = 0.42 1.9 × 10−6 2.8 × 10−5 –

χ = 0.85 2.9 × 10−6 2.9 × 10−5 1.5 × 10−4

4 A simplified FPP-swelling model

The full FPP-swelling model can be written as

∂φn
∂t

+
∂

∂z
(φnvn) = KI0(1− φn) exp(−µ̄z), (18a)

φnvn =
ΩmD(χ)(1− φn)

kBT

∂

∂z
(µm + σen) , (18b)

∂λ

∂t
+ vn

∂λ

∂z
= λ

∂vn
∂z

, (18c)

∂σen
∂t

+ vn
∂σen
∂z

= G(χ)(λ+ λ−1)
∂vn
∂z
− σen
τr
, (18d)

where the chemical potential is given by (8a) and the diffusivity is assumed to have the form D(χ) =

D0 exp(−aχ). Initial conditions for (18) are given by φn = 0, λ = 1, and σen = 0 for t = 0.

In the absence of monomer diffusion, the network velocity is zero, vn = 0, and the network fraction,

position of the polymerisation front (i.e., the unswollen pattern height), and the induction time are given

by

φn(z, t) = 1− exp [−KI0t exp(−µ̄z)] , (19a)

zf (t) = µ̄−1 log(t/τi), (19b)

τi = (KI0)−1 log(1/(1− φc)). (19c)

Furthermore, the network remains unstretched and stress-free, λ = 1 and σen = 0.

A simplified model for the polymerisation front zf , valid in the limit of slow diffusion relative to

conversion, δ ≡ D0µ̄
2/(KI0) � 1, can be derived from the full system of governing equations using

perturbation methods. First, the model is cast into dimensionless form by rescaling the variables as

z = µ̄−1z̃, t = (KI0)−1t̃ and vn = D0µ̄ṽn. Due to the assumption of slow diffusion, we expect that the

deformation and stress of the polymer network will be small. Therefore, we write λ = 1 + δλ̃ and σen =

δG(1)σ̃en. The diffusivity and elastic modulus are written as D(χ) = D0D̃(χ) and G(χ) = G(1)G̃(χ).

After dropping the tildes, the dimensionless model can be written as

∂φn
∂t

+ δ
∂

∂z
(φnvn) = (1− φn) exp(−z), (20a)

φnvn = −D(χ)

[(
1− (1−m−1)(1− φn)

) ∂φn
∂z
− βδ(1− φn)

∂σen
∂z

]
, (20b)

∂λ

∂t
+ δvn

∂λ

∂z
= (1 + δλ)

∂vn
∂z

, (20c)

∂σen
∂t

+ δvn
∂σen
∂z

= G(χ)[1 + δλ+ (1 + δλ)−1]
∂vn
∂z
− σen
τr
, (20d)
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where β = vmG(1)/(kBT ) ' 13 for this particular system (optical adhesive NOA81 at a temperature

of T = 65 ◦C). We will assume that δ is sufficiently small that βδ � 1 as well. Under this condition,

the problems for the stress, stretch, and composition decouple and, thus, the network fraction can be

obtained from (20a) and (20b). To proceed further, we now pose a perturbative expansion in powers of

δ of the form

φn(z, t) = φ(0)n (z, t) + δφ(1)n (z, t) + . . . , (21a)

vn(z, t) = v(0)n (z, t) + δv(1)n (z, t) + . . . , (21b)

zf (t) = z
(0)
f (t) + δz

(1)
f (t) + . . . , (21c)

τi = τ
(0)
i + δτ

(1)
i + . . . . (21d)

An expansion in τi is required in order to ensure that the approximation for zf satisfies zf (τi) = 0, at

least in an asymptotic sense. The leading-order contributions to the network fraction, polymerisation

front, and induction time, φ
(0)
n , z

(0)
f , and τ

(0)
i , are the dimensionless versions of (19) given by

φ(0)n (z, t) = 1− exp(−t exp(−z)), (22a)

z
(0)
f (t) = log

(
t/τ

(0)
i

)
, (22b)

τ
(0)
i = log(1/(1− φc)). (22c)

The correction to the front position, z
(1)
f , is determined by expanding the condition φn(zf (t), t) = φc in

powers of δ to find that

z
(1)
f (t) = −

[
∂φ

(0)
n (z

(0)
f (t), t)

∂z

]−1
φ(1)n (z

(0)
f (t), t) =

[
τ
(0)
i

]−1
exp

(
τ
(0)
i

)
φ(1)n (z

(0)
f (t), t). (23)

Similarly, the correction for the network fraction, φ
(1)
n , is governed by

∂φ
(1)
n

∂t
+

∂

∂z

(
φ(0)n v(0)n

)
= −φ(1)n exp(−z), (24a)

φ(0)n v(0)n = −D(φ(0)n )
(

1− (1−m−1)(1− φ(0)n )
) ∂φ(0)n

∂z
, (24b)

with φ
(1)
n = 0 when t = 0, where we have replaced the conversion fraction χ with the leading-order

network fraction φ
(0)
n . To obtain the solution of this problem, we first carry out a change of variable to

write the equations in a frame of reference that travels with z
(0)
f . This change of variable is given by

ẑ = z − z(0)f (t) and t̂ = t. In addition, we use the ansatz φ
(1)
n (ẑ, t̂) = t̂Φn(ẑ), which, from (23), implies

that

z
(1)
f (t) =

[
τ
(0)
i

]−1
exp

(
τ
(0)
i

)
tΦn(0). (25)

Therefore, the correction to the front position is a linear function of time. The problem for Φn is given

by

Φ− dΦ

dẑ
+

d

dẑ

(
φ̂(0)n v̂(0)n

)
= −τi exp(−ẑ)Φn, (26a)

φ̂(0)n v̂(0)n = −D(φ̂(0)n )
(

1− (1−m−1)(1− φ̂(0)n )
) dφ̂

(0)
n

dẑ
, (26b)
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where φ̂
(0)
n (ẑ) = 1− exp(−τ (0)i exp(−ẑ)). By integrating (26a), we find that

Φn(0) = − exp(−τ (0)i )

∫ ∞
0

d

dẑ

(
φ̂(0)n v̂(0)n

)
exp(−ẑ + τ

(0)
i exp(−ẑ)) dẑ. (27)

Although (27) is cumbersome, it can be significantly simplified by exploiting the smallness of φc, which

implies that τ
(0)
i = log(1/(1− φc)) ∼ φc is also small. Thus, by expanding (27) about τ

(0)
i � 1, we find

that

Φn(0) ' 1

2

τ
(0)
i

m
− 1

6

(
9− 4m+ 4a

m

)(
τ
(0)
i

)2
+ . . . , (28)

Using only the leading contribution of (28), the dimensionless front position can be approximated by

zf (t) = log
(
t/τ

(0)
i

)
+ (1/2)δm−1t+ . . . . (29)

To put (29) into a more physically meaningful form, we impose the condition zf (τi) = 0; using the

expansions in (21), we find that the correction to the induction time is τ
(1)
i = −(1/2)m−1τ

(0)
i . Thus, by

setting τ
(0)
i = τi − δτ (1)i in (29) and expanding about δ, the front position zf can be written as

zf (t) = log(t/τi) + (1/2)δm−1(t− τi). (30)

Therefore, in the limit of slow diffusion, the dimensional position of the polymerisation front can be

approximated as

zf (t) = µ̄−1 log (t/τi) + (1/2)µ̄D0m
−1(t− τi). (31)

When φc is larger, as in the case of acrylate systems (φc ' 0.5 [4]), the integral in (27) must be

evaluated using numerical quadrature. The growth rate of z
(1)
f , which describes the diffusion-induced

departure from the logarithmic kinetics (22b), can then be determined via the relationship (25), i.e.,

dz
(1)
f

dt
=
(
τ
(0)
i

)−1
exp

(
τ
(0)
i

)
Φn(0). (32)

Figure 1 shows the results of numerically calculating the growth rate of z
(1)
f using (32) for various values

of φc and the diffusivity exponent a in the cases when the chain length is set to m = 5 (Fig. 1 (a)) and

m = 50 (Fig. 1 (b)). The figure shows that increasing m only leads to small quantitative changes in

the results. In all cases, the overall trend is that dz
(1)
f /dt decreases with increasing a, which is to be

expected since this corresponds to more rapidly decreasing diffusivities and restricted monomer transport.

Interestingly, for moderate values of the critical conversion fraction (φc = 0.25 and 0.5), the growth rate

of z
(1)
f can become negative for sufficiently large values of a, indicating that the overall height of the

network, zf (t) = z
(0)
f (t) + δz

(1)
f (t), grows more slowly than when there is an absence of diffusion (δ = 0).

This ‘stunted’ network growth arises when two conditions are met: (i) φc is sufficiently large that newly

converted material is distributed throughout the mixture by diffusion before it can accumulate and lead

to a crossing of the φc threshold, and (ii) a is sufficiently large that monomer is unable to enter or move

within the polymer network due to low values of D above φc.

By fitting (31) to the experimental data with m = 5 (see Fig. 2), we find that D0 = 0.18 mm2/min

and 0.36 mm2/min when I0 = 1 W/m2 and I0 = 10 W/m2, respectively. These values are an order

of magnitude larger as those predicted by fitting the full model to the data, which is likely a result of

neglecting mechanical effects in the derivation of (31). Using the fitted values of D0 from the simple
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Figure 1: Growth rates of the correction to the polymerisation front z
(1)
f as a function of the diffusivity exponent

a and the critical network fraction φc for two chain lengths (a) m = 5 and (b) m = 50. Lines and symbols denote

calculations of the growth rate (32) by numerical integration of (27) and using the asymptotic approximation

valid for φc � 1 given by (28), respectively.

model, we find that δ = 3.2 and δ = 0.66 for I0 = 1 and 10 W/m2, respectively. In neither of these cases

is βδ � 1.

The simple expression for the front position (31) is still able to capture the reaction-dominated and

diffusion-dominated time regimes seen in the experimental data despite the fact that δ is not small.

This is possible because the combination δm−1 is small. Moreover, as φn increases, the decrease in the

dimensionless diffusivity D̃(φn) is faster than the growth of M̃(φn) ≡ 1 − (1 −m−1)(1 − φn), implying

that δD̃(φn)M̃(φn) ≤ δm−1 � 1, i.e., the slow diffusion assumption is indeed valid even though δ itself

is not small. In essence, this shows that δm−1 is perhaps a more suitable parameter to describe the

relative rate of diffusion and the validity of (31).

5 Numerical implementation of the FPP-swelling model

Numerically implementing the FPP-swelling model (18), which is based on a sequential growth-swelling

decomposition (See Sec. 4.1.3 of the main text), is straightforward. Our approach uses implicit time

stepping of the governing equations with χ replaced by the network fraction φn computed at the previous

time step multiplied by χmax ' 0.85, the maximum conversion fraction for NOA81 [3]. Spatial derivatives

are discretised using second-order finite difference formulae. The resulting nonlinear system of algebraic

equations is solved at each time step using Newton’s method.

6 The role of crosslink-induced stress reduction

Figure 3 compares simulation results when crosslink-induced stress reduction is included in (solid lines)

and absent from (dash-dotted lines) the FPP-swelling model (18). The evolution of the polymerisation

front zf is shown in Fig. 3 (a). We see that the inclusion of stress reduction leads to a slightly more

rapid propagation of the front. To understand this result, we first note that, from (18b), the volumetric

network flux, q = φnvn, can be decomposed into a Fickian component qF driven by composition gradients
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dashed curves.
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Figure 3: Numerical simulations of the FPP-swelling model (18) with (solid lines) and without (dash-dotted

lines) crosslink-induced stress reduction showing (a) the polymerisation front, (b) the effective stress, and (c) the

Darcy (stress-driven) contribution to the network flux given by (33b). In panels (b) and (c), we use I0 = 10

W/m2 and t = 127 s, corresponding to zf = 1.5 mm.

and a Darcy contribution qD driven by gradients in the stress (equivalently, the pressure). Therefore, we

can write q = qF + qD, where

qF = −D(χ)
[
1− (1−m−1)(1− φn)

] ∂φn
∂z

, (33a)

qD =
ΩmD(χ)

kBT
(1− φn)

∂σen
∂z

. (33b)

The effective stresses and the Darcy fluxes are plotted in Fig. 3 (b) and (c), respectively, when I0 = 10

W/m2 and t = 127 s, corresponding roughly to zf = 1.5 mm. We see that, in the absence of stress

reduction, large gradients in the effective stress give rise to a negative Darcy flux, which drives the

network towards the illuminated surface and opposes the expansion of the network due to monomer

diffusion. Stress-reduction effects significantly decrease the stress gradients and the backflow due to the

negative Darcy flux.
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7 Comparison of alternative permeability laws

7.1 Linear and nonlinear laws in the model for a static polymer network

The governing equations for a static polymer network with a nonlinear permeability law can be combined

into a single nonlinear diffusion equation given by

∂φm
∂t

=
∂

∂z

(
D(φm)

∂φm
∂z

)
, (34a)

where the effective diffusivity D is

D(φm) = D(χ)(1− φm)1−α
(
1− (1−m−1)φm + βφm

[
1 + (1− φm)−2

])
. (34b)

Here, β = ΩmG(χ)/(kBT ) is a dimensionless constant representing the relative strength of elasticity.

From the form of the effective diffusivity (34b), it is clear that differences between linear (α = 1) and

nonlinear (1.5 ≤ α ≤ 2) [1] permeability laws will only be appreciable if the monomer uptake is sufficiently

large. If the monomer remains dilute, φm � 1, then (1− φm)1−α ' 1 for all values of α. The associated

boundary and initial conditions for the model are

∂φm
∂z

∣∣∣∣
z=0

= 0, φm(h(t), t) = φeqm , φm(z, 0) = 0. (34c)

The half-thickness of the polymer network evolves according to

(1− φeqm)
dh

dt
= D(φeqm)

∂φm
∂z

∣∣∣∣
z=h(t)

, (34d)

which is supplemented with the initial condition h(0) = hi.

To assess the impact of using different linear permeability laws in this study, we fit the model (34)

to swelling data obtained using a bath temperature of T = 65 ◦C and static networks with conversion

fraction χ = 0.12 and χ = 0.35, as these conditions led to the greatest expansion and thus monomer

uptake. The diffusivity D(χ) is taken to be the single fitting parameter and we set m = ∞ and Vm =

ΩmNA = 525×10−6 m3/mol. Figure 4 compares the fits using linear and nonlinear (α = 2) permeability

laws. The results are virtually indistinguishable, however, there are minor differences in the values of

the diffusivity: we find that D(0.12) = 1.9 × 10−4 mm2/min (α = 1), D(0.12) = 1.2 × 10−4 mm2/min

(α = 2), D(0.35) = 2.5 × 10−4 mm2/min (α = 1), and D(0.35) = 1.8 × 10−4 mm2/min (α = 2). For

both values of χ, the diffusivity decreases as α is increased. This is because slower diffusion is offset

by enhanced monomer transport due to stronger changes in the network geometry (i.e., increasing pore

size). Figures 4 (b) and (d) plot the evolution of the strain on logarithmic axes, which clearly show

that both permeability laws give rise to t1/2 swelling kinetics. These swelling kinetics are the result

of the self-similarity of the diffusive process for small times and not due to the choice of permeability

law. However, once the monomer reaches the centerline of the network and boundary effects become

relevant, this self-similarity will be destroyed and the swelling kinetics will be altered and influenced by

the permeability law.
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Figure 4: Comparisons of the static swelling model with linear (α = 1) and nonlinear (α = 2) permeability

laws. Lines correspond to numerical simulations of (34) and symbols to experimental data obtained from static

swelling experiments with a bath temperature T = 65 ◦C. The strain is defined as ε(t) = h(t)/h(0)−1 and shown

using linear axes (panels (a) and (c)) and logarithmic axes (panels (b) and (d)).
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7.2 Exponenial and algebraic permeability laws in the model for an evolving

polymer network

The assumption that the diffusivity varies according to Dexp(χ) = D0 exp(−aχ) leads to an exponential

permeability law of the form (see (8) or (19c) in the paper)

kexp ∼
(1− φn) exp(−aφn)

φn
, (35)

where we have taken χ ' φn. Common permeabilities that are used in the literature [1] take the form

kalg ∼
1− φn
φαn

, (36)

where 1.5 ≤ α ≤ 2, which is equivalent to assuming that the diffusivity varies according to Dalg(χ) =

D0χ
1−α. Both permeabilities have the same qualitative features; however, the algebraic form (36) has

a stronger singularity as φn → 0. Thus, unlike the case of a static network, where the form of the

nonlinearity in the permeability law is only relevant for sufficient large monomer uptake, it immediately

becomes apparent in the case of an evolving network because the system begins in a monomer-rich

(φn � 1) state.

We have fitted the model for an evolving polymer network to the experimental data for the network

height zf using both the exponential (35) and algebraic (36) permeability laws, taking a = 5 and α = 2,

and using D0 as the fitting parameter. The computed and experimentally measured network heights,

along with the unswollen profiles z
(0)
f , are are shown in Fig. 5 (a)–(b). For each intensity I0, the model

curves are nearly identical. However, the value of the diffusion coefficient D0 varies by an order of

magnitude: we find D0 ' 8 × 10−2 mm2/min and D0 ' 4 × 10−3 mm2/min using the exponential (35)

and algebraic (36) laws, respectively. The decrease in D0 is due to the more singular nature of Dalg

and hence kalg, which drives a stronger flow of monomer into the polymer network. To compensate

for the stronger flow, the value of D0 must decrease. Figure 5 (c)–(d) compares the network fraction,

excess monomer fraction, and the local stretch at a fixed time of t = 680 s with I = 1 W/m2 using

the different permeability laws. The network fractions are very similar, although the expansion of the

network and the positive and negative monomer excesses are more localised when the exponential form

of the permeability is used. This is because the diffusivity Dexp decreases more rapidly with conversion

fraction compared to Dalg, leading to restricted monomer transport in highly converted regions of the

polymer network.
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Figure 5: Comparisons of models for evolving polymer networks with exponential (35) and algebraic (36)

permeability laws. (a)–(b) Evolution of the network height zf (t) for different incident intensities I0. Solid lines

correspond to numerical simulations, dashed lines are the unswollen height profile, and symbols are experimental

data. (c)–(d) The network fraction φn (solid line), unswollen network fraction φ
(0)
n (dashed line), excess monomer

fraction (dash-dotted line), and local stretch λ (dotted line) at a fixed time of t = 680 s with I0 = 1 W/m2.
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