

Influence of multi-cycle loading on the structure and mechanics of marine mussel plaques

Menaka H. Wilhelm, Emmanouela Filippidi, J. Herbert Waite, and Megan T. Valentine

Supplementary Data

Figure S1: Force required to extend the plaque-thread sample under monotonic loading. The force, $F(\Delta x)$, of each individual plaque-thread loading has been scaled by the geometric mean of the plaque's diameters, D_p , to produce the scaled quantity $F^*(\Delta x)$.

Adhesive Failures			
	Number of Samples	Average of F^*_{MAX}/F^*_{PL}	StdDev of F^*_{max}/F^*_{PL}
Monotonic Loading	6	2.304	0.424
Scheme #1	2	2.528	0.016
Scheme#2	3	3.467	1.206
Scheme#3	1	2.613	
Scheme #4	2	3.829	1.250
Total	14	2.825	0.898

Cohesive Failures			
	Number of Samples	Average of F^*_{MAX}/F^*_{PL}	StdDev of F^*_{max}/F^*_{PL}
Monotonic Loading	1	2.547	-
Scheme #1	1	0.837	-
Scheme#2	1	3.734	-
Scheme#3	1	4.034	-
Scheme #4	0	-	-
Total	4	2.788	1.451

Thread Failures			
	Number of Samples	Average of F^*_{MAX}/F^*_{PL}	StdDev of F^*_{max}/F^*_{PL}
Monotonic Loading	11	3.236	1.263
Scheme #1	3	1.970	2.003
Scheme#2	2	2.509	0.432
Scheme#3	4	3.048	0.890
Scheme #4	4	3.046	0.598
Total	24	2.954	1.177

Tables S1: Maximum scaled force, F^*_{MAX} , normalized by the proportional limit of the scaled force, F^*_{PL} . Three failure modes are shown: adhesive failures due to delamination between plaque and glass, cohesive failures within plaque bulk, and thread failures. StdDev is standard deviation. The various loading schemes are described in Table 2.