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The effect of hydrodynamic interactions in a dilute polyelectrolyte solution are studies in terms of
a series expansion for the Oseen tensor. In other words, we theoretically evaluate the thermophoretic

mobility D
(n)
T of a stiff chain of n beads. Here we present a detailed calculation of the thermophoretic

mobility.

PACS numbers:

I. HYDRODYNAMIC INTERACTIONS

We deal with the hydrodynamic screening of DNA thermophoresis, and in particular the influence of the hy-
drodynamic interactions effect in a dilute polyelectrolytes solution. In other words, we study the molecular weight
dependance of the thermophoretic DT which is defined as

u = −DT∇T. (1)

Consider a molecular chain consisting of n units, where each molecular bead of charge q results in the Debye-Hückel
surface potential ζ = q/4πεa. Throughout this paper we assume that the molecular size a is small compared to the
Debye screening length λ. We find that hydrodynamic interactions enhance the thermophoretic mobility beyond

the single particle value D
(1)
T . In terms of a simple model, we also account for the well-known effect of counterion

condensation which occurs for long chains: Due to the strong attraction of the charged polymer, a fraction of the
counterions condense onto the polymer until the effective charge density of the polymer is reduced to a certain critical
value [3]. The remaining ions are treated within Debye-Hückel approximation.

In the polymer chain, a given molecular unit j creates a flow v in the surrounding fluid, and drag its neighbor
bead i. As a consequence, the overall velocity u can be written as the sum of the velocity of single monomer and the
advection flow engendered by the rest of the molecular chain,

u = u1 +
1

n

∑
i,j 6=i

〈
v(rij)

〉
, (2)

where the angular brackets 〈· · ·〉 indicate the configurational average with respect to the distance vector rij = ri− rj .
The velocity field v(rij) is the solution of the stationary Stokes equation at low Reynolds number. It consists of the

superposition of a term due to the thermodynamic force f exerted by the bead j on the fluid, and the corresponding
counterforce F on the bead,

v(rij) = G(rij) · Fj +

∫
dVG(rij − r) · f j(r), (3)

where we introduce the Oseen tensor G(r) = (1 + r̂r̂)/8πηr with η the solvent viscosity and r̂ = r/r the radial unit
vector [2].

In Eq. (3), the force density f describes the interaction of a molecular unit with the surrounding water. Since there
is no net force on the molecule, we need to account for the backreaction of the fluid on the monomer, in terms of the
counterforce

Fj = −
∫
dV fj , (4)

exerted by the charged fluid on each monomer. These forces provide the source term in the Stokes equation. The
general expression for the thermodynamic force density is evaluated within an approach based on linear response
theory [4],

f = − (ρψ + nikBT )
∇T
T
− E2

2
∇ε− nikBT

∇n0
n0

+ ρET , (5)

where ε is the solvent permittivity, n0 the bulk salinity, ni = n+ + n− the excess ion density and ρ = e (n+ − n−)
the charge density. All terms in f are of comparable magnitude; for small molecules the fields ET and ∇ε dominate,
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whereas the gradients ∇T and ∇n0 are negligible. This limit corresponds to the Hückel limit of electrophoresis, with
the size of a molecular unit much smaller than the Debye length, a � λ. We simplify Eq. (5) by introducing the
logarithmic permittivity derivative τ = −d ln ε/d lnT ,

∇ε
ε

= −τ∇T
T
. (6)

In addition, we treat the electrostatic potential in Debye-Hückel approximation, where eψ is assumed small as
compared to the thermal energy kBT . Then the series of the excess ion density ni and the charge density ρ can be
truncated at second order in ψ,

ni '
εψ2

2λ2kBT
, ρ ' −εψ

λ2
, (7)

where λ2 = 1/8πn0lB denotes the Debye length and lB = e2/4πεkBT the Bjerrum length. Inserting Eq. (6) and Eq.
(7) in Eq. (5), the force exerted by the bead j can be written as

fj =

(
τεE2

j

2kBT
− δαεψj

eλ2

)
kB∇T. (8)

In linear-response approximation with respect to the applied temperature gradient, the configurational average is
done with the isotropic equilibrium distribution function. Then the only finite component of the mean drag velocity
is along electric field axis, and the tensor equation (3) simplifies to a scalar one, where the Oseen tensor is replaced
by its diagonal part G(r) = 1/6πηr. Inserting the density force in Eq. (3) and averaging over the position i on the
polymer chain, we find the thermophoretic mobility

DT = D
(1)
T +

1

n

∑
i,j 6=i

(I (rij)− J (rij)), (9)

with

I(rij) = G(rij)

∫
dV fj (r) , (10)

and

J (rij) =

∫
dV G (|rij − r|) fj (r) . (11)

The second term in parenthesis depends on the details of the counterion distribution; for later use we expand the
pre-average Oseen tensor in term of Legendre Polynomials Pk(cos θ), with cos θ = r̂ij · r̂,

G(|rij − r|) =
1

6πη

∞∑
k=0

Pk(cos θ)
hkij

Hk+1
ij

, (12)

where hij = min (r, rij) denotes the smaller of the distances r and rij , and Hij = max (r, rij) the larger one.

II. THERMOPHORETIC MOBILITY

We still have to compute the volume integrals in Eqs. (10) and (11). In the Debye-Hückel limit, the screened
potential ψj and the corresponding electric field Ej = −∇ψj are given by

ψj = ζ
a

r
e−r/λ. (13)

Inserting this relation into Eq. (3) one finds that the only finite contribution stems from the term k = 0 in Eq. (9);
the remainder vanishes because of the isotropic screening cloud of a single monomer. Assuming that the particle’s
radius a is much smaller that the Debye length λ (a� λ), the volume integral I (rij) − J (rij) is readily performed
by doing a first order development in term of a/λ,

〈I (rij)− J (rij)〉 = τ
εa2ζ2

6ηT

〈
e−2rij/λ

r2ij

〉
− 2S

εaζ

3η

〈
e−rij/λ

rij

〉
, (14)
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where S = δαkB/e is the electrolyte Seebeck coefficient. Eq. (14) characterizes the hydrodynamic interactions between
monomers and shows that the latter are exponentially screened. To find the complete expression of the mobility, we
start by simplifying the configurational average by treating the molecules as rigid rods, rij = |i− j| d, where d is the
monomer spacing along the contour length. Since the force field is exponentially screened, the main contribution to
Eq. (9) stems from within the screened length where the distance is that of a rigid molecule.

Replacing the double sum by the double integral over i and j, then Eq. (9) becomes

DT = D
(1)
T +

1

n

τ εa2ζ26ηT

n∫
1

didj

(
e−2|i−j|d/λ

|i− j|2 d2

)
− 2S

εaζ

3η

n∫
1

didj

(
e−|i−j|d/λ

|i− j| d

) . (15)

Eliminating the absolute value and computing the double integral over i and j, we finally obtain the thermophoretic
mobility in the form:

DT = D
(1)
T +

2a

d

[
τ
εaζ2

6ηdT

{(
1 + 2nd̂

) E−2d̂ − E−2nd̂
n

+ e−2d̂ − e−2nd̂

n

}
− 2S

εζ

3η

{
E−nd̂ − E−d̂ +

e−nd̂ − e−d̂

nd̂

}]
,

(16)
with the single-monomer expression

D
(1)
T =

ε

3η

(
τ
ζ2

T
− 2Sζ

)
,

the potential ζ = ẑe/4πεa, and the effective valency ẑ. We have also defined the reduced monomer distance d̂ = d/λ
in units of the Debye length, and use the shorthand notation for the exponential integral

Ex = Ei (x) =

∫ x

−∞

e−u

u
du.

We introduce moreover the dimensionless quantities

χε =
a2

d2

{(
1 + 2nd̂

) E−2d̂ − E−2nd̂
n

+ e−2d̂ − e−2nd̂

n

}
,

χS =
2a

d

(
E−nd̂ − E−d̂ +

e−nd̂ − e−d̂

nd̂

)
,

and thus obtain the thermophoretic mobility in the form

DT =
εζ2

3ηT
(1 + χε)τ −

2εζ

3η
(1 + χS)S. (17)

So far we have not specified the effective valency ẑ which is a measure for the fraction of uncondensed counterions.
For very short chains all counterions remain mobile, and we have ẑ = 1, whereas for long chains the effective valency
takes the value ẑ = ξ−1, with the Manning parameter ξ = lB/d. In other words, if the linear charge density e/dof a
polymer is higher than e/lB , counterion condensation reduces the effective valency from 1/d to the value 1/lB . This
effect occurs only if lB > d; in the case of weakly charged polymers d > lB , there is no counterion condensation.

Yet this value occurs only for sufficiently long chains. As the number n of molecular units increases there is a
crossover of the valency from unity to ξ−1, which is described by

ẑ = ξ−1 +
1− ξ−1

1 + βn
, (18)

where the quantity βn is zero for short chains and tends for infinity for long polymers. This crossover constitutes an
intricate problem of polyelectrolytes, which is beyond the scope of the present work. Here we use the simple form
βn =

(
n2 − 1

)
n−20 , which increases with the square of the molecular length and where the parameter n0 determines

the cross-over length. In principle, n0 depends on the Debye length. We find that the data shown in Fig. 2) are well
described by n0 = 80. A more complex dependency of βn on n and on the Debye length would slightly modify the
decrease of the mobility at high molecular weight, yet would not affect the initial increase.
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Debye length λ (nm) Soret coefficient ST (10−2/K) at T = 15◦ C
2 mer 5 mer 10 mer 22 mer 50 mer 80 mer

2.2 0.78 1.19 1.86 2.11 3
3 1.03 1.49 2.12 2.86 3.10 3.27
4.2 1.15 1.9 2.7 3.69 4.6
5.2 1.29 1.89 2.89 3.8 5.19 4.8
6.2 1.45 1.89 2.59 4.2 5.79 6.21
7 1.5 1.89 3.2 4.41 5.8 6.31
8 1.43 2.25 3.07 4.44 6.58 6.29
9.7 1.48 2.09 3.4 4 7.1 6.09
11.3 1.45 2.2 3.29 8.81 5.21

TABLE I: Experimental value of ssDNA Soret coefficient in function of the Debye length at the corresponding chain length: 5
monomers, 10 monomers, 22 monomers, and 80 monomers.

Introducing the effective charge ẑ and the Bjerrum length lB in the Eq. (16), one obtains the simple expression for
the thermophoretic mobility

DT =
kB

12πηa

{
ẑ2
lB
a

(1 + χε) τ + 2ẑ (1 + χS) Ŝ

}
. (19)

Consequently, the overall velocity of the DNA- chain can be written as

u =
ζ2

3η
(1 + χε)∇ε+

2εζ

3η
(1 + χS)ET . (20)

The velocity u comprises two terms, which are proportional to the permittivity gradient of the solvent and to the
electrolyte Seebeck field. These contributions carry different hydrodynamic correction factors χε and χS . Both vanish
in the monomer limit n = 1 and increase with the molecular length. In the limit n → ∞ the coefficients χε and χS
tend towards the values 2d̂E−2d̂ + e−2d̂ and −E−d̂ ≈ ln (λ/d), respectively.

Due to hydrodynamic interactions, the thermophoretic mobility DT increases with the chain length, whereas at
higher molecular weight, counterion condensation results in a decrease of DT with n. As a consequence, DT shows a
maximum at some intermediate value nmax, as shown in Fig. 2a.

III. COMPARISON WITH EXPERIMENT

The above theory gives the thermophoretic mobility DT , whereas experiments often probe the Soret coefficient
ST = DT /D, where the diffusion coefficient D = kBT/6πηRh is determined by the hydrodynamic radius Rh of the
molecule. Fig. 1 shows the measured values of Rh [6]. The values for n = 10 and 22 slightly increase with the
Debye lenght, as expected from the increased stiffness in weak electrolytes. The data for n = 5 and 50 show a slight
decrease and significant scatter. Unfortunately, for such short molecules, there is no simple and generally formula for
the hydrodynamic radius.

In order to obtain a rational bases for comparing our DT to the measured ST , we have fitted the data to the simple
law

Rh = R(n) [1 + (λ− λ0) /L] ,

where R(n) is taken as an adjustable parameter. We have adjusted this form mainly to the data at n = 10 and 22,
since they seem to be most reliable in view of what is expected. The theory curves of Fig. 3 are calculated according
to ST = DT /D, with the theoretica expression for DT and the above fit curve for D. Accordingly, the experimental
values in Fig. 2 are obtained from DT = DST .
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FIG. 1: Variation of the hydrodynamic radius with Debye length and molecular weight. The data points are taken from Ref.
[6]. The curves are given by the expression Rh = R(n)[1 + (λ−λ0)/λ1]. The parameters λ0 = 7 nm and λ0 = 42 nm are chosen
in order to provide a good fit to the measured data. The prefactors are: R(5) = 1.35 nm, R(10) = 1.71 nm, R(22) = 2.01 nm,
R(50) = 3.7 nm, R(80) = 4.74 nm.
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(a)Thermophoretic mobility DT
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(b)Soret coefficient ST

FIG. 2: Variation of experimental and analytical: a) thermophoretic mobility DT in function of the chain length n. b) Soret
coefficient ST in function of the Debye length λ. The parameters used here for the two graphs are: the monomer’s size a = 4.25Å

and distance between monomer d = 3Å, the reduced Seebeck coefficient Ŝ = 0.
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