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Schemes of drying fronts 

 

 

 

 

 

 

 

Schematic (above) of a drying colloid showing normal (vertical, z direction) and lateral 

(horizontal, x direction) drying fronts moving at speeds SN and SL, respectively. SL >> SN. For 

clarity, lateral drying fronts in the y direction are not represented but also exist.  

In the case of rigid particles, when one zooms onto a horizontal drying front (below) one sees 

that two fronts can be distinguished: a compaction front where particles agglomerate and a 

water front separating the wet and dry gel regions.  
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Fluid velocity in the fluid domain tacking hydrostatics into account  

 

In the following, we derive the fluid velocity in the fluid domain within the lubrication 

approximation in presence of hydrostatic pressure, for a simple case (1D) of a film spreading 

on a substrate with  𝑃𝐴, 𝑃𝐵, 𝑃𝐶 , 𝑃𝐷 the pressures at different points in the film: 

𝑃𝐴 − 𝑃𝐵 + 𝑃𝐵 − 𝑃𝐶 + 𝑃𝐶 − 𝑃𝐷 + 𝑃𝐷 − 𝑃𝐴 = 0 

 

 

 

 

 

 

 

 

 

  Schematic of a sample during drying. Each point on the schematic has a specific pressure. 

Where: 

 𝑃𝐴 − 𝑃𝐷~0,  

 𝑃𝐴 − 𝑃𝐵~𝛾
𝑑2ℎ(𝑥)

𝑑𝑥2 ,  h(x) = height of the film at position x. 

 𝑃𝐵 − 𝑃𝐶~∫ ∇⃗⃗ 
𝐵

𝐶
𝑝. 𝑑𝑙⃗⃗  ⃗ = ∫

𝑑𝑝

𝑑𝑥
. 𝑑𝑥

𝑥𝐵

𝑥𝐶
, 

 𝑃𝐶 − 𝑃𝐷~ + 𝜌𝑔(ℎ∞ − ℎ𝐶) =  𝜌𝑔(ℎ∞ − ℎ𝐵) =  𝜌𝑔(ℎ∞ − ℎ(𝑥𝐵)) here ℎ∞ represents 

the maximum height of the film. 

The characteristic time of establishment of hydrostatic pressures is ~𝐻0/𝐶𝑠. Where 𝐻0 is 

the initial height of the sample and 𝐶𝑠 is a constant. 

The integral of the pressure circuit gives: 

𝛾
𝑑2ℎ(𝑥𝐵)

𝑑𝑥2
+ ∫

𝑑𝑝

𝑑𝑥
. 𝑑𝑥

𝑥𝐵

𝑥𝐶

+  𝜌𝑔(ℎ∞ − ℎ(𝑥𝐵)) = 0 

Within the lubrication approximation, the profile of horizontal fluid velocity is given by 

Poiseuille’s law. The mean velocity in the horizontal direction is 

< 𝑢 > = −𝐾
𝑑𝑃

𝑑𝑥
 

The characteristic time of Poiseuille is: 
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𝐻0
2

𝜇
=

𝜌𝐻0
2

𝜂
= 𝜏𝑃 

With 𝜇 the kinematic viscosity and 𝜂 the dynamic viscosity. It has to be noted that every 

relaxation faster than 𝜏𝑃 is likely not to be well described using the lubrication approximation. 

𝐾 =
ℎ2

3𝜂
 

𝜏𝑃 = 3𝜌𝐾 =
𝜌ℎ2

𝜂
 

Using these equations in the pressure circuit gives: 

𝛾
𝑑2ℎ(𝑥𝐵)

𝑑𝑥2
+ ∫ −

< 𝑢 > (𝑥)

𝐾(𝑥)
𝑑𝑥

𝑥𝐵

𝑥𝐶

+ 𝜌𝑔(ℎ∞ − ℎ(𝑥𝐵)) = 0 

𝛾
𝑑3  ℎ(𝑥𝐵)

𝑑𝑥3
−

< 𝑢 > (𝑥𝐵)

𝐾(𝑥𝐵)
− 𝜌𝑔

𝑑ℎ

𝑑𝑥𝐵
= 0 

Therefore: 

ℎ < 𝑢 >= 𝐾 [𝛾
𝑑3  ℎ

𝑑𝑥3
− 𝜌𝑔

𝑑ℎ

𝑑𝑥
] ℎ =

ℎ3

3𝜂
 [𝛾

𝑑3  ℎ

𝑑𝑥3
− 𝜌𝑔

𝑑ℎ

𝑑𝑥
] 

The variation of h within an elementary volume with respect to time is given by: 

𝑑𝑥(ℎ(𝑥, 𝑡 + 𝑑𝑡) − ℎ(𝑥, 𝑡))𝑑𝑡 = 𝑑𝑡(ℎ < 𝑢 > (𝑥 + 𝑑𝑥, 𝑡) + ℎ < 𝑢 > (𝑥, 𝑡)) − 𝐸̇𝑑𝑡𝑑𝑥 

Thus: 

𝜕ℎ

𝜕𝑡
𝑑𝑥𝑑𝑡 = −𝑑𝑡𝑑𝑥

𝜕

𝜕𝑥
(ℎ < 𝑢 >) − 𝐸̇𝑑𝑡𝑑𝑥 

𝐸̇ +
𝜕ℎ

𝜕𝑡
=  

𝜕

𝜕𝑡
(ℎ∞ − ℎ(𝑥, 𝑡)) 

𝜕

𝜕𝑡
(ℎ∞ − ℎ(𝑥, 𝑡)) =

𝜕

𝜕𝑥
(
ℎ3

3𝜂
 [𝛾

𝑑3  ℎ

𝑑𝑥3
− 𝜌𝑔

𝑑ℎ

𝑑𝑥
]) 
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Front position determination (ImageJ) 

 

 

 

ImageJ was used in order to determine the compaction front position. The photograph is first 

converted into a grey scale image. Then, the intensity along a diameter (for the circular 

geometry) or along an axis of symmetry (for the rectangular deposit) is computed. An example 

of such a profile is given in Fig S1 below. From this profile, we determine manually the two 

compaction fronts (denoted by arrows in Fig S1). 

 

 

 

 

 

Fig. S1  Example of compaction front position determination using the ImageJ software. 

Photograph of the circular sample (diameter 4 cm) converted into grey levels (left). Grey level 

along a diameter (right). Slope changes, indicated by arrows, correspond to compaction fronts. 

Let us remind the reader that water fronts could not be followed in this work because they 

corresponded to the apparition of cracks.  
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Sketch of the principle of the optical profilometry used in this work 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A light source projects the image of a grid onto the sample. A CCD camera captures images of 

this grid reflected by the surface of the suspension. The non-planar surface of the drying film 

creates a distortion of the image of the grid. An image processing software transforms the 

deformed grid into quantified information of the local slopes of the surface as well as XYZ 

coordinate to reconstruct the topography.  
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Routh and Russel model 

Fig. S2  Film profile (left) and particle volume fraction (right) versus lateral dimension at 

different times during drying calculated using our cellular simulation in the conditions of the 

Routh and Russel (RR) model. Film height scaled on the initial film thickness, lateral dimension 

(X) scaled on the capillary length in the RR sense, time scaled on the characteristic time 
𝐻0

𝐸̇
 . 

Initial particle volume fraction: 0.3. Volume fraction at close packing: 0.7. Infinite capillary 

pressure. 

 

Contribution of hydrostatic pressure  

 

 

 

 

 

 

 

 

 

Fig. S3  Film profile versus lateral dimension at time = 0.1 for different initial thicknesses (i.e. 

different Lcap / Lg ratios) when taking hydrostatics into account. Film height and lateral 

dimension (X) in real dimension (m). time scaled on the characteristic time 
𝐻0

𝐸̇
 . Lcap / Lg = 1.5; 

3; 7.5 for H0 = 100 m; 200 m; 500 m, respectively.  = 70 mJ/m2, 𝜂0 = 1 Pa.s, 𝐸̇ = 10-8 m/s, 

 = 1000 kg/m3, g = 9.81 m/s2. Initial particle volume fraction: 0.3. Volume fraction at close 

packing: 0.7. Infinite capillary pressure (taken at 1000 for calculation). 
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Particle front position vs time with hydrostatics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S4  Particle front position versus time for different initial film thicknesses when taking 

hydrostatics into account. Comparison with RR model (blue curve). Lateral dimension (X) 

scaled on Lcap, time scaled on 
𝐻0

𝐸̇
 . Other parameters like in Fig. S2.  
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Taylor diffusion of suspensions in a semi-parabolic flow

The hydrodynamics of drying suspensions is commonly treated in the lubrication approxima-
tion. This approximation for Newtonian fluids consists in a locally parabolic velocity profile
driven by some pressure gradient. It is analogue to some extent to Poiseuille parabolic flows
occurring in pipes of cylindrical section at low Reynolds numbers. When considering the longitu-
dinal diffusion of a solute or suspended particles (i.e. parallel to the flow direction) one may be
concerned by the fact that the velocity field is not uniform. Suspended particles will be advected
faster in the regions close to the free boundary than at the vicinity of the solid surface. Such
an heterogeneous advection is known as the Taylor, or Taylor-Aris diffusion problem and has
received a satisfactory solution in the case of laminar Poiseuille flows occurring in cylindrical
pipes [1, 2]. We outline below an equivalent treatment in the presence of a semiparabolic
Poiseuille lubrication flow, and for a concentration independent diffusion coefficient D.

The lubrication flow In the case of drying suspensions, there are two boundary conditions :
vanishing velocity at the solid surface and vanishing stress (vanishing velocity gradient) at the
free air fluid surface. If one denotes by y the direction normal and x the direction parallel to the
surface, the resulting flow displays a semi-parabolic velocity profile

u = u(x, y)ex =
(y − 2h)y

2η0

∂ph
∂x

(x)ex, (1)

ph(x) being the total hydrostatic pressure with no y dependence, η0 the dynamic viscosity of
the suspension (solvent and particles), h the film thickness.

The local velocity field can also be expressed by means of the average cross-section velocity,
obtained by applying a projection operator P

P(u) = Pu =
1

h

∫ h

0
dyu(x, y). (2)

P is a linear operator mapping any function of x, y onto a function of x only, and obeys the
standard projection rule P(P) = P2 = P. Then, in the lubrication approximation,

u(x, y) =
3y(2h− y)

2h2
Pu(x) (3)

The lubrication approximation is expected to hold if the velocity gradient along the x direction
are small compared with the vertical gradient, and the time scales of the problem are long
compared with τh = ρH2/η0, ρ mass density of the suspension, H ∼ h typical height, which is
the characteristic time for stabilizing a Poiseuille parabolic velocity profile.

The transport of a species in the presence of a stream involves explicitly the velocity field
u. In the case of an incompressible flow accross a constant section cylindrical pipe, the velocity
gradients have the effect of enhancing the diffusion constant of the species along the longitudinal
direction.

Projection of the transport equations Our notations will be the following ones :
• commas stand for partial differentiation, e.g. f(x, y, t),x = ∂f/∂x.
• P is the vertical average projection operator, and Q = 1 − P its orthogonal complement.
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With these notations, one checks the following properties
• (Pf),t = P(f,t) and (Qf),t = Q(f,t),
• (Pf),x = P(f,x) and (Qf),x = Q(f,x),
• P(gf) = gP(f) if g is function of x only,
• PQf = QPf = 0,
• P(f,y) = f(y=h)−f(y=0)

h ,

• P(f,yy) =
f,y(y=h)−f,y(y=0)

h ,
• (Pf),y = 0,
• (Qf),y = f,y

It is expected as a rule that Qf remains smaller than Pf , and expansions are going to be
performed according to this rationale. We assume that the velocity field u and the elevation h
are constant and uniform. The starting point is the collective diffusion equation

Φ,t + uΦ,x = DΦ,xx +DΦ,yy (4)

This equation expresses the conservation of the latex suspension volume fraction Φ, itself
proportionnal to the particle number density. Gradients of Φ create a current −D∇Φ which
involves the diffusion coefficient D.

The first step is to apply P to eq. (4). The result is

PΦ,t + P(uΦ,x) = P(DΦ,x),x (5)

where the second term in r.h.s vanishes due to Φ,y(y = 0) = 0,Φ,y(y = h) = 0, and one has

Pφ,t + Pu PΦ,x + P(uQΦ,x) = DPΦ,xx (6)

Similar considerations guide the orthogonal projection of the transport equation. The idea
is to substract eq.(6) from eq.(4).

Qφ,t + QuPΦ,x + Q(uQΦ,x) = D(QΦ),yy +D(QΦ),xx (7)

Terms in (6) and (7) are not of the same magnitude and must be hierarchized. In order to
proceed in a systematic way, it is now necessary to guess which are the relevant scales of the
problem and to rescale both equations appropriately.

Rescaling and effective equations Let us assume that vertical lengths scale as H and define
y = y/H, h = h/H, that horizontal lengths scale as Lφ and define x = x/Lφ. One introduces a
(yet undetermined) characteristic time scale for horizontal diffusion τD (t = t/τD) and a velocity
scale V representative of the stream u, with u = u/V .

From V , D and Lφ can be derived a horizontal Peclet number Peh = V Lφ/D. An interesting
limit emerges when Lφ is larger than H, with the effect of inhomogeneous flow resulting in the
redefinition of the diffusion constant, and the possibility to derive a simple, effective 1d-diffusion
equation. We therefore assume H/Lφ � 1.

The two projected equations rescale as

1

τD
Qφ,t +

V

Lφ
QuPΦ,x +

V

Lφ
Q(uQΦ,x) =

D

H2
(QΦ),yy +

D

L2
φ

(QΦ),xx (8)

1

τD
Pφ,t +

V

Lφ
PuPΦ,x +

V

Lφ
P(uQΦ,x) =

D

L2
φ

PΦ,xx (9)
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The usual treatment of the Taylor diffusion assumes that the second term of lhs and the first
term of rhs balance in eq. (8), while other terms are subdominant. Introducing ε = H2V

DLφ
, one

finds

L2
φ

DτD

H2

L2
φ

Qφ,t + εQuPΦ,x + εQ(uQΦ,x) = (QΦ),yy +
H2

L2
φ

(QΦ),xx (10)

L2
φ

DτD
Pφ,t + PehPuPΦ,x + PehP(uQΦ,x) = PΦ,xx (11)

One expects ε� 1, QΦ ∼ ε and QΦ � PΦ. The horizontal diffusion time scale is set by the
equivalent L2

φ/DτD ∼ 1, which entails H2/DτD � 1. The primary balance of the first equation
reads

εQuPΦ,x = (QΦ),yy (12)

Recast in the original, unscaled variables, one finds

Qu(y)PΦ,x = D(QΦ),yy (13)

As Qu is a known function of y, the above equation reduces to a double quadrature accompanied
by the boundary conditions Φ,y = (QΦ),y = 0 at y = h and y = 0, and the integral condition
PQΦ = 0. The solution reads

Qu =

(
−1 +

3y

h
− 3

2

(y
h

)2
)
Pu;

QΦ =
h2PΦ,xPu

8D

(
8

15
− 4

y2

h2
+ 4

y3

h3
− y4

h4

)
. (14)

Then, one can substitute for the P(uQΦ,x) term in eq. (17)

uQΦ,x =
3y(2h− y)

2h2
×
(

8

15
− 4

y2

h2
+ 4

y3

h3
− y4

h4

)
× h2PΦ,xxPu

2

8D

P(uQΦ,x) = − 2

105

h2PΦ,xxPu
2

D
(15)

leading eventually to

Pφ,t + PuPΦ,x =

[
D +

2(hPu)2

105D

]
PΦ,xx (16)

Pφ,t + PehPuPΦ,x =

[
1 + εPeh

2(hPu)2

105

]
PΦ,xx

It results in an effective enhanced 1-d diffusion coefficient Deff = D+2h2(Pu)2/105D, known
as Taylor diffusion constant.

Discussion It is therefore possible to integrate out the coupled effect of lateral diffusion and
lateral shear velocity drift and to obtain an effective 1d transport equation. This can only
be done properly if the longitudinal scale Lφ of the concentration gradient is larger than the
thickness of the film H. At large horizontal Peclet number, there is the possibility of a significant
enhancement of the effective diffusion constant.
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The previous derivation is valid under the assumptions H/Lφ � 1, H2V/DLφ � 1,
τD ∼ L2

φ/D.
At the vicinity of the solid (wet gel front) region, the flow has to switch from parabolic to

uniform. This is also a region where strong concentration gradients are expected. More likely than
not, the above assumptions will break down at the vicinity of the solid front. A comprehensive
approach would therefore be needed to deal with a truly 2d problem in variables x and y.

Références
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Taylor diffusion of suspensions in a semi-parabolic flow


The hydrodynamics of drying suspensions is commonly treated in the lubrication approxima-
tion. This approximation for Newtonian fluids consists in a locally parabolic velocity profile
driven by some pressure gradient. It is analogue to some extent to Poiseuille parabolic flows
occurring in pipes of cylindrical section at low Reynolds numbers. When considering the longitu-
dinal diffusion of a solute or suspended particles (i.e. parallel to the flow direction) one may be
concerned by the fact that the velocity field is not uniform. Suspended particles will be advected
faster in the regions close to the free boundary than at the vicinity of the solid surface. Such
an heterogeneous advection is known as the Taylor, or Taylor-Aris diffusion problem and has
received a satisfactory solution in the case of laminar Poiseuille flows occurring in cylindrical
pipes [1, 2]. We outline below an equivalent treatment in the presence of a semiparabolic
Poiseuille lubrication flow, and for a concentration independent diffusion coefficient D.


The lubrication flow In the case of drying suspensions, there are two boundary conditions :
vanishing velocity at the solid surface and vanishing stress (vanishing velocity gradient) at the
free air fluid surface. If one denotes by y the direction normal and x the direction parallel to the
surface, the resulting flow displays a semi-parabolic velocity profile


u = u(x, y)ex =
(y − 2h)y


2η0


∂ph
∂x


(x)ex, (1)


ph(x) being the total hydrostatic pressure with no y dependence, η0 the dynamic viscosity of
the suspension (solvent and particles), h the film thickness.


The local velocity field can also be expressed by means of the average cross-section velocity,
obtained by applying a projection operator P


P(u) = Pu =
1


h


∫ h


0
dyu(x, y). (2)


P is a linear operator mapping any function of x, y onto a function of x only, and obeys the
standard projection rule P(P) = P2 = P. Then, in the lubrication approximation,


u(x, y) =
3y(2h− y)


2h2
Pu(x) (3)


The lubrication approximation is expected to hold if the velocity gradient along the x direction
are small compared with the vertical gradient, and the time scales of the problem are long
compared with τh = ρH2/η0, ρ mass density of the suspension, H ∼ h typical height, which is
the characteristic time for stabilizing a Poiseuille parabolic velocity profile.


The transport of a species in the presence of a stream involves explicitly the velocity field
u. In the case of an incompressible flow accross a constant section cylindrical pipe, the velocity
gradients have the effect of enhancing the diffusion constant of the species along the longitudinal
direction.


Projection of the transport equations Our notations will be the following ones :
• commas stand for partial differentiation, e.g. f(x, y, t),x = ∂f/∂x.
• P is the vertical average projection operator, and Q = 1 − P its orthogonal complement.







With these notations, one checks the following properties
• (Pf),t = P(f,t) and (Qf),t = Q(f,t),
• (Pf),x = P(f,x) and (Qf),x = Q(f,x),
• P(gf) = gP(f) if g is function of x only,
• PQf = QPf = 0,
• P(f,y) = f(y=h)−f(y=0)


h ,


• P(f,yy) =
f,y(y=h)−f,y(y=0)


h ,
• (Pf),y = 0,
• (Qf),y = f,y


It is expected as a rule that Qf remains smaller than Pf , and expansions are going to be
performed according to this rationale. We assume that the velocity field u and the elevation h
are constant and uniform. The starting point is the collective diffusion equation


Φ,t + uΦ,x = DΦ,xx +DΦ,yy (4)


This equation expresses the conservation of the latex suspension volume fraction Φ, itself
proportionnal to the particle number density. Gradients of Φ create a current −D∇Φ which
involves the diffusion coefficient D.


The first step is to apply P to eq. (4). The result is


PΦ,t + P(uΦ,x) = P(DΦ,x),x (5)


where the second term in r.h.s vanishes due to Φ,y(y = 0) = 0,Φ,y(y = h) = 0, and one has


Pφ,t + Pu PΦ,x + P(uQΦ,x) = DPΦ,xx (6)


Similar considerations guide the orthogonal projection of the transport equation. The idea
is to substract eq.(6) from eq.(4).


Qφ,t + QuPΦ,x + Q(uQΦ,x) = D(QΦ),yy +D(QΦ),xx (7)


Terms in (6) and (7) are not of the same magnitude and must be hierarchized. In order to
proceed in a systematic way, it is now necessary to guess which are the relevant scales of the
problem and to rescale both equations appropriately.


Rescaling and effective equations Let us assume that vertical lengths scale as H and define
y = y/H, h = h/H, that horizontal lengths scale as Lφ and define x = x/Lφ. One introduces a
(yet undetermined) characteristic time scale for horizontal diffusion τD (t = t/τD) and a velocity
scale V representative of the stream u, with u = u/V .


From V , D and Lφ can be derived a horizontal Peclet number Peh = V Lφ/D. An interesting
limit emerges when Lφ is larger than H, with the effect of inhomogeneous flow resulting in the
redefinition of the diffusion constant, and the possibility to derive a simple, effective 1d-diffusion
equation. We therefore assume H/Lφ � 1.


The two projected equations rescale as


1


τD
Qφ,t +


V


Lφ
QuPΦ,x +


V


Lφ
Q(uQΦ,x) =


D


H2
(QΦ),yy +


D


L2
φ


(QΦ),xx (8)


1


τD
Pφ,t +


V


Lφ
PuPΦ,x +


V


Lφ
P(uQΦ,x) =


D


L2
φ


PΦ,xx (9)







The usual treatment of the Taylor diffusion assumes that the second term of lhs and the first
term of rhs balance in eq. (8), while other terms are subdominant. Introducing ε = H2V


DLφ
, one


finds


L2
φ


DτD


H2


L2
φ


Qφ,t + εQuPΦ,x + εQ(uQΦ,x) = (QΦ),yy +
H2


L2
φ


(QΦ),xx (10)


L2
φ


DτD
Pφ,t + PehPuPΦ,x + PehP(uQΦ,x) = PΦ,xx (11)


One expects ε� 1, QΦ ∼ ε and QΦ � PΦ. The horizontal diffusion time scale is set by the
equivalent L2


φ/DτD ∼ 1, which entails H2/DτD � 1. The primary balance of the first equation
reads


εQuPΦ,x = (QΦ),yy (12)


Recast in the original, unscaled variables, one finds


Qu(y)PΦ,x = D(QΦ),yy (13)


As Qu is a known function of y, the above equation reduces to a double quadrature accompanied
by the boundary conditions Φ,y = (QΦ),y = 0 at y = h and y = 0, and the integral condition
PQΦ = 0. The solution reads


Qu =


(
−1 +


3y


h
− 3


2


(y
h


)2
)
Pu;


QΦ =
h2PΦ,xPu


8D


(
8


15
− 4


y2


h2
+ 4


y3


h3
− y4


h4


)
. (14)


Then, one can substitute for the P(uQΦ,x) term in eq. (17)


uQΦ,x =
3y(2h− y)


2h2
×
(


8


15
− 4


y2


h2
+ 4


y3


h3
− y4


h4


)
× h2PΦ,xxPu


2


8D


P(uQΦ,x) = − 2


105


h2PΦ,xxPu
2


D
(15)


leading eventually to


Pφ,t + PuPΦ,x =


[
D +


2(hPu)2


105D


]
PΦ,xx (16)


Pφ,t + PehPuPΦ,x =


[
1 + εPeh


2(hPu)2


105


]
PΦ,xx


It results in an effective enhanced 1-d diffusion coefficient Deff = D+2h2(Pu)2/105D, known
as Taylor diffusion constant.


Discussion It is therefore possible to integrate out the coupled effect of lateral diffusion and
lateral shear velocity drift and to obtain an effective 1d transport equation. This can only
be done properly if the longitudinal scale Lφ of the concentration gradient is larger than the
thickness of the film H. At large horizontal Peclet number, there is the possibility of a significant
enhancement of the effective diffusion constant.







The previous derivation is valid under the assumptions H/Lφ � 1, H2V/DLφ � 1,
τD ∼ L2


φ/D.
At the vicinity of the solid (wet gel front) region, the flow has to switch from parabolic to


uniform. This is also a region where strong concentration gradients are expected. More likely than
not, the above assumptions will break down at the vicinity of the solid front. A comprehensive
approach would therefore be needed to deal with a truly 2d problem in variables x and y.
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