Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

Microfluidic Production of Degradable Thermoresponsive Poly(Nisopropylacrylamide)-Based Microgels

Daryl Sivakumaran[†], Eva Mueller[†] and Todd Hoare*

Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada L8S 4L7

* To whom correspondence should be addressed: hoaretr@mcmaster.ca

[†]These authors contributed equally to the work

Figure S1. Swelling ratio hysteresis associated with the first heating/cooling cycle for PNIPAM microgels made with an oil flow rate of 1.1 mL/h. Note that such hysteresis is very common for bulk hydrogels and, to a lesser extent, nanogels, with this result (as anticipated) lying in between those two extreme cases.

Figure S2. Compression cycles for three microgels at 10% (orange), 20% (black) and 40% (grey) strains. There is no hysteresis between any of the cycles at any deformation, with full elastic recovery observed after each cycle.

Figure S3. Stress versus strain plot and linear regression fits to calculate modulus (with R^2 values) of six replicate bulk hydrogel compression experiments

Figure S4. Raw force versus time results from mechanical testing of the six bulk hydrogels tested (all the same composition)

Figure S5. Gel permeation chromatography traces comparing molecular weight distributions of PNIPAM-Hzd and PNIPAM-Ald precursor polymers with the degradation products following complete digestion of the microgels in 1 M HCl

Table S1. Stress versus strain results for six replicated bulk hydrogels prepared with the same PNIPAMhydrazide and PNIPAM-aldehyde concentrations as used in the microfluidic microgel assembly process.

Strain	Stress (kPa)					
0.1	1.3	2.3	1.1	1.4	1.2	1.8
0.2	2.8	4.0	1.7	3.0	3.3	2.7
0.3	5.5	7.4	3.4	5.2	5.7	3.9
0.4	8.2	9.2	3.9	5.6	5.8	4.8
Modulus*	23.2	25.9	10.3	14.9	16.4	10.2
Standard Error	2.0	6.7	1.6	2.4	3.8	0.4
Average Modulus	16.8	<u>± 6.6</u>				

* slope of linear regression

Table S2. Plateau force measurements for microgels compressed to different strains showing no significant mechanical hysteresis and high elasticity (see raw data in Supplementary Fig. S2).

	Plateau Force (µN)					
	Strain = 10%	Strain = 20%	Strain = 40%			
Cycle 1	6.6 ± 1.8	9.4 ± 0.6	15.3 ± 2.3			
Cycle 2	6.3 ± 1.8	9.3 ± 2.1	14.8 ± 2.1			
Cycle 3	6.8 ± 0.3	9.2 ± 0.8	14.5 ± 1.8			
Cycle 4	6.5 ± 0.4	9.2 ± 1.3	15.1 ± 1.7			

Modulus calculations for bulk hydrogels:

- (1) Measure average plateau force (μN) during the hold step at each tested strain
- (2) Calculate stress = force/area, where area is the surface area of the platen (4 mm x 4 mm); the gel was rectangular and larger than the platen used for the testing
- (3) Plot stress versus strain (Figure S3), where the slope represents the modulus

Modulus calculations for microfluidic particles:

- (1) Take average plateau force at each strain
- (2) Calculate modulus using Hertzian equation (because of spherical geometry)
- (3) Back-calculate stress from modulus and strain to then plot stress versus strain