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S1. Adsorption models: summary of the formulae 

 

Table S1. Equations of state and surface activity coefficients (adsorption isotherms) of various adsorption 

models. 
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S2. The adsorption constant Ka 

In this section, the adsorption constant Ka will be related to the surfactant structure and the parameters 

of the media (temperature, bulk compositions etc.) through a model proposed by Ivanov et al. [49,7,8] 

for the interaction free energy (z) of a surfactant molecule with the interface. The main 

contributions to (z) which were taken into account in this model are summarized below. 

 a) Contribution of the hydrophobic solvation of surfactant’s linear hydrocarbon chain. The 

adsorption of a surfactant molecule from the water phase to the interface is due mostly to the 

hydrophobic effect [68,65], i.e. to the change of the free energy of the hydrophobic tail upon its 

transfer from the hydrophobic phase to the water phase. Let this transfer energy per single –CH2– 

group be CH2 (CH2 > 0). We will denote the length of a –CH2– group along the hydrophobic chain 

by lCH2 (lCH2 =1.26 Å [65,68]) and the number of the carbon atoms in the hydrocarbon chain by n 

(therefore, the total chain length, including the –CH3 end, is close to nlCH2). We will use the symbol z 

for the distance between the interface and the “hydrophilic-lyophilic centre” of the surfactant, which is 

the point where the hydrophilic head and the hydrophobic chain are connected [78,68]. For simplicity, 

we assume that the surfactant molecule remains perpendicular to the interface during the adsorption 

process. Then, if z < nlCH2, a portion of the surfactant hydrocarbon chain of length nlCH2 – z will be 

immersed into the hydrophobic phase. This corresponds to a free energy change –(n – z/lCH2)CH2 

upon transfer of a molecule from the bulk to a distance z from the interface [49]. The result is, 

however, not entirely correct, since the end –CH3 group has different area and adsorption energy from 

a –CH2– group. We account for this by introducing in the energy –(n – z/lCH2)CH2 a correction term 

CH3 – CH2 equal to the extra adsorption energy of the methyl group with respect to a –CH2–. This 

yields [49]: 
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 b) Contribution of the disappearing interfacial area. Upon adsorption, the hydrocarbon chain 

penetrates the interface, and a portion of the interface is replaced by the chain [49,7,6]. If the cross-

sectional area of the chain is , then the contribution of this replacement to the adsorption energy is 

equal to –0, where 0 is the interfacial tension of the pure interface. Assuming that this energy is 

gained at the moment of contact between the hydrocarbon chain and the interface (at z = nlCH2), we can 

write the corresponding potential profile  as [49]: 
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The significance of this term for the dependence of the adsorption constant Ka at W|O interface on the 

nature of the oil phase is discussed in Ref. [7]. The linear dependence of lnKa on 0 was confirmed 

there by using data of Rehfeld [102] for the adsorption isotherms of the ionic surfactant sodium 

dodecylsulfate on various W|O interfaces which allow determination of Ka as a function of 0 only. 

The term 0 has a large contribution to the enthalpy of adsorption, and therefore, determines to a 

large extent the temperature dependence of Ka (figure 8 in Ref. [8]). 

 c) Contribution of rotation. In order to estimate the contribution of the rotational degrees of 

freedom of the adsorbed molecule to the adsorption constant Ka, let us first calculate the partition 

functions for the initial (in the bulk) and the final (at the surface) states. For simplicity we assume that 

the molecule rotates as a solid stick of inertial moment I. The Hamiltonian of a freely rotating stick in 

spherical (r,,) coordinates is [59]: 

  2 2 2/ sin / 2H p p I    .         (33) 

Here p and pare the respective momenta of the stick. This Hamiltonian corresponds to bulk partition 

function (Eq. 8-27 of Hill [59]): 
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where h is Planck constant. For a surfactant molecule at the interface, we assume that this rotation is 

again free but restricted to the semi-space z < 0. This yields for the surface partition function qS
rot: 
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It follows from Eqs. (34)&(35) that when the molecule is far from the interface, the free energy of 

rotation is: 

  
2

2 2

rot CH B B( ) ln 4π /f z nl k T k TI h   ,        (36) 

and when it is precisely at z = 0, 

  2 2

rot B B( 0) ln 2π /f z k T k TI h   .        (37) 

Upon transfer to z = 0, the surfactant molecule is losing total rotational free energy frot(z = 0) =  

frot(z = 0) – frot(z > nlCH2) = kBTln2. The local shape of frot(z) in the interval nlCH2 > z > 0 is relatively 

unimportant for the final result for Ka, except for too short-chained surfactants. Therefore, for the sake 



 

of simplicity, similarly to Eqs. (31)&(32), we approximate frot with a simple step-function: 
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The difference between frot and rot is disregarded. 

 d) Contribution of the hydration of the head group. We assume that the head group cannot be 

dehydrated and desorbed into the hydrophobic phase. This is equivalent to a hard-wall potential: (z) 

= ∞ at z < 0. 

 е) Other contributions. There are other factors, which also contribute to the adsorption energy: 

(i) The interaction between the hydrophilic head group and the interface at z > 0; (ii) Appearance of an 

induced dipole moment involving the –CH2– group adjacent to the polar hydrophilic head, which acts 

oppositely to the hydrophobic effect and leads to immersion of the methylene group into the water 

phase (cf. chap. 3 of Ref. [68]). (iii) Changes in the internal degrees of freedom (vibration and internal 

rotation) of the molecule upon adsorption. The latter effect is involved to a certain extent in the 

transfer energy nCH2 of the surfactant chain from the hydrophobic phase to the water and since we 

are using experimental values for CH2, it is probably accounted for implicitly in our model. (iv) The 

approximated nature of our equations for the contributions a-d) can also affect the final result for the 

adsorption energy. Since the effects (i-iv) are still not well-understood, we account for them by adding 

to the total adsorption energy of the surfactant an empirical constant head encompassing all of them – 

its contribution will be analysed post-factum, by comparing theoretical results with the experimental 

data (Sec. 3.1). 

 Combining Eqs. (31),(32)&(38) with the contributions d) and e), one obtains for (z): 
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Here the adsorption free energy Ea stands for the expression: 

  
2 3a CH CH 0 head1 Δ Δ ΔE n          .       (40) 

Eq. (39) is illustrated in Fig. S1. 

 



 

 

 

Fig. S1. Interaction potential (z) between a surfactant molecule and the interface as a function of the distance 

z between the surfactant hydrophilic-lyophilic centre and the interface, cf. Eq. (39). According to the model, at 

distance z > nlCH2, there is no significant interaction. At z = nlCH2, energy is gained due to the disappearance of 

clean water surface of area , and the transfer energy of the –CH3 group, cf. Eq. (32). At shorter distances, 

there is a linear dependence of  on z related to the energy of transfer nCH2 of the hydrocarbon chain from 

water to the hydrophobic phase, see Eq. (31). 

 Let us now consider an ideal surfactant solution of concentration C. The local chemical potential 

(z) of a molecule at a distance z from the interface is: 

 B S

0 B( ) ln ( ) Δ ( )z k T C z z     .        (41) 

Here, CS(z) is the local concentration of surfactant near the surface. From the condition (z) = B =  

0
B
 + kBTlnCfor chemical equilibrium, the Boltzmann distribution of the surfactant molecules follows: 

 S

B( ) exp( Δ ( ) / )C z C z k T  .         (42) 

Inserting this distribution into Gibbs definition of adsorption, one obtains Henry’s adsorption isotherm: 
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where the adsorption constant of the surfactant Ka is defined as: 
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It follows from this derivation that Henry’s isotherm (43) is valid if the surface-molecule interaction 

potential (z) is independent on C(z), which is the case of dilute adsorption layer. Inserting the 



 

expression (39) for (z) into the definition (44) of Ka and performing the integration, one obtains: 
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i.e. Eq (13). The pre-exponential factor a has the dimension of length and we call it the adsorption 

length. Our definition (14) of a is similar to the one in the theory of adsorption of spherical molecules 

[59] in the sense that it involves only factors related to the kinetic energy of the adsorbed molecules. 

Eq. (13) is determining also the value of 0
S
 in Eq. (2): 0

S
 = 0

B
 – kBTlnKa =0

B
 – Ea – kBTlna, cf. also 

Eq. (3). 

 

S3. Details about the processing of tensiometric data  

Here we describe the procedures for processing the experimental tensiometric data and determining the 

values of the adsorption constants of non-ionic surfactants within the direct approach (Sec. 3.1). 

Within the direct approach, this is done by fitting the initial region of the experimental surface pressure 

isotherms with the virial expansion (6) of S(C). 

 Let us consider first the adsorption at W|O. Aveyard and Briscoe [32] represented their data for 

interfacial tension  of fatty alcohols at W|O as a function of the alcohol concentration CO in the oil 

phase. In order to compare these data with results for W|A (where the surfactant is in the water phase), 

we recalculate the corresponding concentration C in water by using experimental data for the partition 

coefficient of the alcohols [33] and for the alcohol’s tetramerisation constant in the alkane phase [34]. 

Aveyard and Mitchell [33] studied the partitioning of alcohols (of chain length n from 4 to 7) between 

water and various alkanes (subscript A; their carbon number nA vary from 8 to 16). They found that the 

partition coefficient in dilute solution, Kp = CO/C, depends on the chain lengths both of the surfactant 

and the alkane. Their data for Kp followed the linear regression model (cf. footnote 5 in the main text): 

 
2p p0 A A B CH Bln ln / Δ /K K n k T n k T    .       (46) 

From numerous independent experimental data, we previously found that CH2 = 1.39×kBT [8] (see 

also the S4). By fitting the data of Aveyard and Mitchell [33] with Eq. (46), we determined A = 

0.057×kBT and lnKp0 = –7.05. These values differ from those of Aveyard and Mitchell [33] by a few 

percents since they used three fitting parameters (CH2 was considered unknown) instead of our two 

(fixed CH2 = 1.39×kBT). 

 In order to calculate the surfactant concentration C in water from the experimental values of CO, 



 

 

we used the relation C = OCO/Kp. The activity coefficient O in the oil phase was calculated by solving 

the equation CO = OCO+4K1,4(OCO)4, where K1,4 = 780 M–3 [34,8] is the tetramerisation constant of 

the alcohol in the oil phase. 

 In Sec. 3.1, we used the virial equation (6) to fit the tensiometric data and determine the 

adsorption constant Ka of the alcohols (in Ref. [8], we used instead the HFL model (1), as in Sec. 3.3). 

We considered only the experimental data of Aveyard and Briscoe which correspond to S < 10 mN/m 

(the first 5-15 points) – in this region, the effect of the ternary interactions can be disregarded so that 

Eq. (6) is valid (in contrast to the analysis of the complete adsorption models in Sec. 3.3, where all 

data points available are taken into account). The fit involves two parameters – the adsorption constant 

Ka and the second virial coefficient B2. However, since B2 is obtained with rather high dispersion, only 

the values of Ka are of interest and are discussed in the main text. The results are presented in Fig. 3 as 

lnKa vs. n; the regression is illustrated in Fig. 1. The data in Fig. 3 refer to alkane phase varying from 

octane to hexadecane; unlike the partition coefficient Kp the adsorption constant Ka from water to W|O 

interface, within the experimental error, seems independent on the length nA of the alkane molecule. 

This suggests that the term –AnA in Eq. (46) for Kp is related mostly to the state of OH in the oil 

phase. 

 Similar fitting procedure with the virial expansion Eq. (6) has been used with the data for non-

cohesive surfactants at W|A (N-n-alkyl-N,N-dimethylglycine, CnH2n+1Me2N
+CH2COO–, and short 

chain length homologues of n-alkyl dimethyl phosphine oxides, CnH2n+1Me2PO) and W|O  

(Cn-1H2n-1COOH with n = 4 and 5). The results for Ka so obtained are presented in Fig. 3 and Table 1.  



 

S4. Calculation of the transfer energy CH3
 of the methyl group 

In this supplement, we determine the value of the transfer energy CH3 of a methyl group from oil to 

water from the data of Abraham for the solubilities in water of alkanes of different chain lengths nA 

(Tables 2 and 3 of Ref. [76]). For the chemical potential of an alkane molecule in the water and alkane 

phases we use the expressions (cf. Eq. 19-16 of Hill [59]): 
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Here vW and vO are molar volumes of water in the water phase and of alkane molecule in the alkane 

phase respectively; xW is molar part of the saturated water solution of alkane; xW/vW = CW is the molar 

concentration of alkane in the water. The standard chemical potentials 0
W

 and 0
O
 involve, first, all 

internal degrees of freedom of the surfactant molecule, and second, the interaction energy of the 

molecule with its surroundings (cf. Eq. 19-5 of Hill [59]). Eqs. (47) lead to the following expression 

for the equilibrium solubility xW: 
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Assuming that the contributions of the –CH2– and –CH3 groups are additive (i.e.0
W

  0
O
 =  

2CH3 + (nA  2)CH2), we can rewrite Eq. (48) as follows: 
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Here CH2 = 1.39×kBT and vW = 18.1 mL/mol; experimental values for xW and vO are given in Table 

S2, together with the values of CH3 calculated from Eq. (49). 

 Tanford [77] did not account for the entropic term ln(vW/vO) in Eq (49), which is not negligible – it 

is of the order of 1-2 kBT and depends on nA through the molar volume vO. Consequently, he obtained 

different values both for CH2 and for CH3 (his 1.49 vs. our 1.39×kBT and his 3.55 vs. our 2.75×kBT 

respectively). The average value for the transfer energy CH3 for the alkanes in Table S2 is 2.75×kBT, 

in agreement with the estimate of Ivanov et al. [49]. 

  

 

 

 



 

 

Table S2. Calculation of the transfer energyCH3 of a –CH3 from oil to water phase from Eq. (49). 

n a lnxW b vO [mL/mol] CH3/kBT 

5 -11.5 115 2.77 

6 -13.1 132 2.8 

7 -14.4 147 2.71 

8 -16.1 162 2.78 

9 -17.7 179 2.85 

10 -18.9 194 2.71 

12 -21.7 227 2.65 

average:                                                             2.75±0.07 

a Data for solubility xW of liquid alkanes taken from Abraham [76]; b Data for vO from Refs. [103,104]. 

 

 

 

S5. The attraction parameter  

 In Ref. [16], the expression (22) was used for surfactants with relatively large head groups. For 

this case, the exponent under the integral can be expanded into series up to the linear term. This leads 

to an analytical formula for  [16]: 

 2 2
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1/25/2
CH CH

5/2 1/2

CH B

ππ
arctan

32 2

nL nl

l k T


 
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Even for short chain lengths, Eq. (50) deviates significantly from the exact result (22), cf. Fig. S2. The 

deviations become larger with the increase of n, especially for surfactants of small actual molecular 

area . Therefore, when the model for  is compared with experimental data, we have used the exact 

result (22) only. 

 In Fig. S3, the interaction parameter of alcohol films at W|A following from the processing of the 

experimental data with the SD or the SIAL adsorption models are compared, as functions of the chain 

length n. The SD model works only if the non-linear dependence (22) is used, while the accuracy of 

SIAL is acceptable only if combined with the linear Eq. (25). 

  



 

 

Fig. S2. The attraction parameter  vs. the hard-disc area  of the surfactant, calculated by numerical integration 

of Eq. (22), at various hydrocarbon chain lengths (from n = 6 to n = 16; black lines are even values of n, red are 

odd; 25ºC). Dashed line is () at n = 6 calculated according to the linearized formula  – it is seen that its 

accuracy is insufficient. 

 

Fig. S3. Attraction parameter  of alcohols (from propanol to decanol) at W|A according to the results from SD 

and SIAL models. SD model agrees with the tensiometric data for alcohols only in combination with the non-

linear model (22) for . Due to the different approach towards the lateral attraction, SIAL model agrees with the 

tensiometric data only if the linear dependence is used:  = 0.86 + 0.56n, see Eq. (25). The combined use of the 

SD model with Eq. (25), and also of the SIAL model with Eq. (22), strongly disagree with the experiment.  
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S6. Comparison of various models and fitting procedures against 

tensiometric data 

 Table S3 (for alcohols at W|O) and Table S4 (for various amphiphiles at W|A) compare all 

considered model to tensiometric data for whole homologous series of surfactants. The free parameters 

of the homologous series are determined via the optimization of merit functions similar to Eq. (29). 

The most important results are discussed in the main text, Sec. 3.3-3.5; those calculated for 

completeness and for further reference to the parameter values are discussed briefly here and in S8-

S10. 

 An important from practical viewpoint test is the comparison between all models from Sec. 2.1.2 

under the same conditions – 3 free parameters, Ka0,  and . The results are given in rows {8-11} in 

Table S2. As benchmarks we will use the area  = 16.5 Å2 following from crystallographic & collapse 

data, the “direct” value of lnKa0 = 21.3 from Table 1, and  = 0.332 obtained with the 2-parametric fit 

of the SD model, which we consider as reliable. The results lead to the following conclusions: (i) the 

deviations of all 3-parametric models in rows {8-11} are exactly the same. (ii) All models yield almost 

the same value for the adsorption constant Ka0, very close to the one directly determined in Sec. 3.1. 

This is due to the fact that the initial slope of the S(C) curve (the Henry region) is model-independent. 

(iii) The SD model yields values of  and  closest to the benchmark values. (iv) The model of SIAL 

also gives a value of  close to 16.5 Å2 but slightly higher  than SD. (v) The models of van der Waals 

and Frumkin give considerably larger values of  (better for vdW), and negative values of  as can be 

expected from Eqs. (20). 

  



 

 

Table S3. Adsorption parameters of CnH2n+1OH at W|O interfaces,  

obtained by the minimization of a merit function of the type of Eq. (29). 

CnH2n+1OH 

at water|alkanea 
ln(Ka0/[m]) 

V, L 

[Å2] 
,  V,  L 

dev

mN/m

one-parametric fit 

{1} HFL -20.95 16.5b 0 0.49 

two-parametric fits 

{2} HFL -21.1 14.2 0 0.40 

{3} Volmer -21.2 24.4 0 0.39 

{4} Langmuir -21.25 39.0 0 0.40 

{5} SD -21.1 16.5b 0.332 0.40 

{6} vdW -21.0 18.2 -1c 0.40 

{7} Frumkin -21.0 21.0 -3/2c 0.41 

three-parametric fits 

{8} SD -21.1 17.2 0.437 0.39 

{9} SIAL -21.2 15.8 0.556 0.39 

{10} vdW -21.2 24.2 -0.032 0.39 

{11} Frumkin -21.1 35.1 -0.297 0.39 

For each model, the assumed fixed values of the parameters are underlined. The transfer energy in the 

expression (26) for the adsorption constant is fixed to CH2 = 1.39×kBT for all models. The equations defining 

the adsorption models (first column) are listed in S1. a Alcohols are with chain length n = 8÷18 (even n only), 

oil phase is alkane with nA = 8÷16; T = 20˚C. b Value of the area, calculated from data for the crystallographic 

and collapse area of alcohols. c In accordance with Eqs (20), the fixed values L = -3/2 and V = -1 correspond 

to the lack of attraction ( = 0). 
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Table S4. Adsorption parameters of CnH2n+1OH, Cn–1H2n–1COOH, CnH2n+1Me2PO and CnH2n+1Me2N+CH2COO– 

at W|A, obtained by minimization of a merit function of the type of Eq. (29).  

model 
num. free 

parameters 
range of na ln(Ka0/[m])b 

, V, L 

 [Å2] 
, V, L

dev

mM/m

CnH2n+1Me2P+O– at W|A,   n = 7-16,   average T = 23.5˚C 

{1} SD 1 7-11/non-coh -19.9 29c Eq. (22)d 1.0 

{2} SD 2 7-11/non-coh -20.0 28.2 Eq. (22)d 0.98 

{3} SD 2 7-11/non-coh -21.0 29c 0.49(n+1)e 1.7 

{4} SD 1 7-16/all -19.7 29c Eq. (22)d 2.0 

{5} SIAL 1 7-11/non-coh -20.5 29c 0.49(n+1)e 1.7 

{6} SIAL 3 7-11/non-coh -20.5 29c -0.08+0.35n 1.0 

{7} SIAL 3 7-16/all -20.6 29c -0.08+0.38n 1.3 

{8} vdW 4 7-11/non-coh -19.9 33.0 -2.46+0.273n 0.91 

{9} Frumkin 4 7-11/non-coh -19.8 43.4 -2.41+0.206n 0.93 

CnH2n+1Me2N+CH2COO– at W|A,   n = 8-16,   average T = 20˚C 

{10} SD 2 8-16/non-coh -21.3 31.0 Eq. (22)d 1.8 

{11} SD 3 8-16/non-coh -21.6 30.2 2.31 1.1 

{12} SIAL 4 8-16/non-coh -21.55 23.4 1.93 + 0n 1.1 

Cn–1H2n–1COOH at W|A,   n = 3-10,   average T = 21˚C 

{13} SD 1 3-4/non-coh -20.4 18c Eq. (22)d 0.57 

{14} SD 1  3-10/all -20.2 18c Eq. (22)d 0.93 

{15} SD 2 3-10/all -20.2 18.2 Eq. (22)d 0.92 

{16} SIAL 1 3-10/all -20.4 18c (n +1)0.49e 0.94 

{17} SIAL 3 3-10/all -20.7 18c 1.44 + 0.46n 0.78 

{18} vdW 4 3-10/all -20.4 22.55 -0.47+0.35n 0.63 

{19} Frumkin 4 3-10/all -20.1 28.8 -1.0 + 0.26n 0.70 

CnH2n+1OH at W|A,   n = 3-10,   T = 21˚C 

{20} SD 2 3-4/non-coh -20.1 16.5c Eq. (22)d 0.88 

{21} SD 1 3-10/all -20.4 16.5c Eq. (22)d 1.44 

{22} SD 2 3-10/all -20.1 17.3 Eq. (22)d 1.06 

{23} SIAL 1 3-10/all -20.1 16.5c (n +1)0.49e 1.5 

{24} SIAL 3 3-10/all -20.6 16.5c 0.86 + 0.56n 0.95 

{25} vdW 4 3-10/all -20.3 20.9 -0.48+ 0.39n 1.1 

{26} Frumkin 4 3-10/all -21.6 31.0 0.97+ 0.26n 1.6 

For each model, the assumed fixed values of the parameters are underlined. The equations defining the 

adsorption models (first column) are listed in S1. a Data either only for non-cohesive or for all (cohesive and 

non-cohesive) homologues are used. b For W|A, we use fixed value of the transfer energy CH2 = 1.04×kBT. c 

Fixed value of  calculated from the crystallographic and/or collapse areas. d Fixed to the value predicted by the 

nonlinear Eq. (22). Note that the expression (22) for  involves  as a parameter; this was accounted for in the 

optimization procedure. e Fixed value of 1 = 0.49 taken from Smith [66]. 

 

  



 

S7. Analysis of the dispersion of the SD model as a function of the interaction 

parameters  and  

The two interaction parameters  and  affect the surface pressure isotherm in similar manner and in 

result they cannot be determined from tensiometric data with good accuracy in most cases. This is 

valid for all models from Sec. 2.1.2. To illustrate the problem, we will consider the deviation of the SD 

model, Eqs. (10)-(12), from the data for oil-soluble alcohols (Eq. (29) and row {8} from Table S3). We 

fixed ln(Ka0/[m]) to its best value, 21.14, and then analysed the merit function dev(,). This function 

has a minimum at  = 17.2 Å2 and  = 0.437; the optimal value of dev is 0.392 mN/m. It turns out, 

however, that the minimum of dev(,) is rather flat. The deviation is within 1% of the optimal value 

for any  between 0 and 1 and  between 14 and 21 Å2, provided that they are related between each 

other as  = 0.13  1.8 (Fig. S4). This problem is a significant source of errors, especially if data for 

each homologue is fitted separately. Therefore, fits with both  and  being left as adjustable 

parameters must be avoided. This means, for example, that the result for  from row {5} in Table S3 

(2-parametric SD model with free Ka0 and ) is far more reliable than the one in row {8} (3-parametric 

SD model with free Ka0,  and ). 

 

Fig. S4. Standard deviation of the SD model compared to the tensiometric data for oil-soluble alcohols (n = 

8÷18) at the W|O interface as a function of  and . Fixed value ln(Ka0/[m]) = 21.14 is used. It is seen that any 

value of  between 0 and 1 and any  between 14 and 21 Å2 can give deviation below 0.396 mN/m (the global 

minimum is by 1% smaller; any set of adsorption parameters falling inside the ellipse has dev < 0.396 mN/m). 

 



 

 

S8. Adsorption of the water-soluble non-ionic surfactants at the W|O 

interface 

        

 

Fig. S5. Interfacial pressure S vs. concentration C in the water of several water-soluble surfactants at W|O.  

a. Butanol at water|dodecane, T = 20˚C. Red points: data from Ref. [82]; blue line: SD model with no fitting 

parameters (the values of the long-chained oil-soluble alcohols from Table 2 were used). b. Butanoic and 

pentanoic acid at water|benzene, 35ºC. Red points: data from Ref. [72]; blue lines: SD model with Ka0 = 2.00 Å 

and  = 1.56. c. Tridecyldimethylphosphineoxide at water|hexane, 20ºC. Red points: data from Ref. [83]; blue 

lines: SD model with Ka0 = 1.63 Å and  ≈ 0. 



 

 The findings presented in Sec. 3.3 were about oil-soluble alcohols. In order to verify the obtained 

results, we analysed also the interfacial tension data for a water-soluble alcohol. To the best of our 

knowledge, only data for butanol, adsorbed at water|dodecane interface are available [82]. We used the 

SD model with fixed values of the actual area per molecule,  = 16.5 Å, and  = 0.332; the adsorption 

constant is Ka = Ka0exp(nCH2/kBT) = 0.169 m following from the value ln(Ka0/[m]) = -21.14 (Table 

2). The predicted surface tension isotherm is in good agreement with the experimental data, Fig. S5a. 

The small positive deviation of the data is probably due to the non-ideality of the aqueous butanol 

solution, and perhaps the inaccuracy of Eq. (46) for Kp (which can shift the lnKa0 values determined for 

the oil-soluble surfactants in Table 2 by an additive constant). 

 The tensiometric data for butanoic and pentanoic acids at the water|benzene (W|B) interface were 

processed with the 2-parametric SD model ( is assumed independent of n and lnKa is assumed to 

follow Eq. (26) with CH2 = 1.39×kBT as with alcohols at W|O, cf. Sec. 3.3). The result is illustrated in 

Fig. S5b. Data for a single homologue of the phosphineoxides at W|O is available – it is fitted with the 

SD model in Fig. S5c. The results are discussed in Sec. 3.3. 

 

S9. Application of the adsorption models to data for N-alkyl-N,N-

dimethylglycines at W|A 

 All homologues of the zwitterionic CnH2n+1Me2N
+CH2COO– at W|A from Refs. [96,97,86] (n = 8-

16) point at weakly cohesive behaviour, suggesting that  is close to 2 (cf. Sec. 3.5). Unfortunately, we 

found no reliable data for the area per molecule of these surfactants. In addition, the data showed 

significant disagreement with both Eq. (22) and Eq. (24) for . This is evident from the high deviation 

of the SD model with  fixed to the predictions of Eq. (22) (1.8 mN/m, cf. row {10} in Table S4). A 4-

parametric fit with SIAL model with assumed linear (n) dependence (Eqs. (8),(9)&(25) with 

parameters Ka0, , 0 and 1) yields 1 = 0, which means essentially that the attraction parameter  is 

almost independent of n (row {12} in Table S4). We performed two more tests of this result. The first 

one was to set  = const in the SD model for all CnH2n+1Me2N
+CH2COO– homologues. This yields a 

relatively low deviation of 1.1 mN/m and area per molecule close to that of CnH2n+1Me2PO (row {11} 

in Table S4). The second test is following from the fact that if  is not strongly dependant on n, then 

scaling behaviour similar to the one shown in Fig. 4 for the alcohols at W|O can be expected. Indeed, 

the SD isotherm (12) can be written as: 
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which is similar to Eq. (30). Provided that  is independent of n, Eq. (51) suggests that if S is plotted 

against C×exp(nCH2/kBT), where the value CH2/kBT = 1.04 for W|A is used, data for all 

homologues must fall on a single master curve. This is demonstrated in Fig. S6. Only the most long-

chained homologues deviate from the theoretical line predicted by the SD model with constant . 

   

Fig. S6.  Surface pressure S vs. scaled concentration of N-alkyl-N,N-dimethylglycines at W|A (n = 8-16, T = 

20˚C). Data for all homologues fall on a single master curve when plotted in S vs. ln[C×exp(nCH2/kBT)] 

coordinates (with CH2/kBT = 1.04), in agreement with Eq. (51). The line is calculated via the SD model, Eqs. 

(10)-(12), with Ka0 = 4.33 Å,  = 30.2 Å2 and  = 2.31 (Table 2). The scaling demonstrates that  is independent 

of n. This fact can be explained with the strong electrostatic attraction between the head groups (illustrated with 

a red arrow between the positively charged N- and the negatively charged O-atoms in the picture on the right) – 

seemingly, this interaction dominates over the van der Waals attraction between the hydrocarbon chains. 

 A possible explanation of the observed little or no dependence of  on n is the following one. Due 

to the high area per molecule, the attraction between the hydrophobic chains is relatively small, cf. Fig. 

2. On the other hand, a very strong electrostatic attraction is possible between the head groups, 

illustrated in Fig. S6 with a red arrow. If the latter interaction is prevailing (which seems to be true for 

all homologues with the exception of those with the longest chains),  will indeed depend only on the 

head group. 

 The interaction in Fig. 2 is essentially attraction due to the tangential component of the large 



 

dipole moment of the N+CH2COO– head group. The normal component of this dipole moment leads 

to a very long ranged repulsion (which leads to interactions at macroscopic distances [105]!). The 

contribution of this interaction to the free energy of the surface and the equation of state can be 

analysed using the approach of Ref. [106], but is complicated by the numerous unknown parameters 

(surface polarizabilities, bulk quadrupolarizabilities). 

 

S10. Phase transition in the continual approach – the S(C) isotherm 

In this Supplement, the phase behaviour predicted by the SIAL model is considered.  

 The set of extremum points of Eq. (8) for S() at any value of  corresponds to the spinodal 

curve of this EoS, i.e. the spinodal is defined with the condition for extremum, ∂S(;)/∂ = 0. 

Substituting here the expression (8) for S of the SIAL model and solving, we can find the relation 

between  and  defining the spinodal: 
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Substituting  with spinodal in the EoS (8), we obtain the spinodal curve in S vs. coordinates: 
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The spinodal curve is plotted in Fig. S7a. Below the spinodal curve, no stable phase exists (the 

mechanical condition for stability, ∂S()/∂ > 0, is violated). Between the spinodal and the binodal, 

only metastable gaseous (on the right of the spinodal) and LE (on the left) phases exist; normally, these 

metastable phases must pass through a phase transition, forming a heterogeneous film. 

 To represent the spinodal in S vs. C coordinates, we substitute Eq. (52) into SIAL adsorption 

isotherm (9): 
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Eqs. (53)-(54) define parametrically the spinodal in S vs. C (with parameter ). The result is shown 

in Fig. S7b-d (red dash-dot line). The cusp of the spinodal corresponds to the coordinates of the critical 

point. 



 

18 

 

 

 

Fig. S7. a. Phase diagram in S vs. 1/ coordinates (suitably made dimensionless) according to SIAL model, 

including the spinodal. Below the spinodal stands the truly unstable 2-D fluid. Between the spinodal and the 

binodal are the metastable gaseous and LE phases. b-d. Phase diagram in S vs. C coordinates (suitably made 

dimensionless) for a supercritical, critical and subcritical adsorption layers. Above the critical , the S(C) curve 

has a characteristic intersection point with itself. The intersection point is falling on the binodal and corresponds 

to the gaseous-LE phase transition. The two cusps falling on the spinodal mark the boundaries of the stable 

gaseous and LE phase. The branch connecting the two cusps correspond to the unstable state of the layer 

(corresponding to the part of the S(1/) below the spinodal in a). 

 The SIAL model gives no analytical expression for the binodal curve. The binodal in Fig. S7a is 

the numerical solution of the conditions for mechanical and chemical equilibrium between the gaseous 

and the LE phase, S(G;) = S(LE;) and S(G;)G = S(LE;)LE, where the functions S and S 

are given by Eqs. (8) and by SIAL’s surface activity coefficient, 
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compare to Eq. (2). The equilibrium conditions are solved for G and LE for each  > cr. The 

obtained G and LE are then substituted in Eqs. (8) and (9) to calculate S
binodal and Cbinodal 

corresponding to the binodal curve (at the binodal, it follows from the condition for chemical 

equilibrium that CG = CLE ≡ Cbinodal and from the mechanical equilibrium that S,G = S,LE ≡ S
binodal). 

The result is plotted in Fig. S7a (S
binodal vs. 1/G at  < cr and S

binodal vs. 1/LE at  > cr) and Fig. 

S7b-d (blue dotted line, S
binodal vs. Cbinodal). The coexistence curve in S vs. C coordinates has no two 

branches and it ends at the critical point. 
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