Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2017

Supplementary information: Acceleration and suppression of banana-shaped-protein-induced tubulation by addition of small membrane inclusions of isotropic spontaneous curvatures

Hiroshi Noguchi Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan. e-mail: noguchi@issp.u-tokyo.ac.jp

SUPPLEMENTAL FIGURES

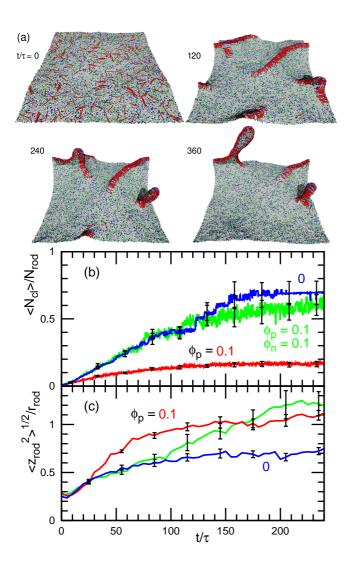


FIG. S.1. Rod assembly at $\phi_{\rm rod} = 0.1$, $C_{\rm rod} = C_{\rm p} = -C_{\rm n} = 3/r_{\rm rod}$, and $\gamma = 0$. (a) Sequential snapshots at $t/\tau = 0$, 120, 240, and 360 for $\phi_{\rm p} = \phi_{\rm n} = 0.1$. Two tubules protrude from the branching points of the rod clusters. (b),(c) Time development of (b) mean cluster size $\langle N_{\rm cl} \rangle$ and (c) vertical rod span $\langle z_{\rm rod}^2 \rangle^{1/2}$. The vertical span of the rod assembly is calculated from the height variance as $z_{\rm rod}^2 = \sum_{i \in {\rm rod}} (z_i - z_{\rm rG})^2/N_{\rm rod}$ where $z_{\rm rG} = \sum_{i \in {\rm rod}} z_i/N_{\rm rod}$.

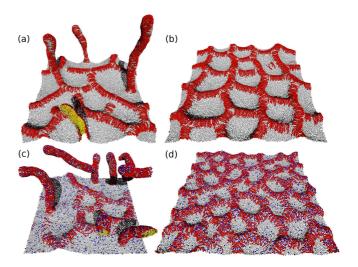


FIG. S.2. Snapshots of the membrane under positive surface tension at $\phi_{\rm rod} = 0.4$ and $C_{\rm rod} = C_{\rm p} = 3/r_{\rm rod}$. (a) $\phi_{\rm p} = 0$ and $\gamma r_{\rm rod}^2/k_{\rm B}T = 6.25$. (b) $\phi_{\rm p} = 0$ and $\gamma r_{\rm rod}^2/k_{\rm B}T = 12.5$. (c) $\phi_{\rm p} = 0.1$ and $\gamma r_{\rm rod}^2/k_{\rm B}T = 12.5$. (d) $\phi_{\rm p} = 0.1$ and $\gamma r_{\rm rod}^2/k_{\rm B}T = 25$.

MOVIE CAPTIONS

Movie S1: Tubulation from a flat membrane at $\phi_{\rm rod} = 0.1$, $\phi_{\rm p} = 0.1$, $C_{\rm rod}r_{\rm rod} = 3$, $C_{\rm p}r_{\rm rod} = 3$, and $\gamma = 0$.

Movie S2: Tubulation from a budded membrane at $\phi_{\rm rod} = 0.1$, $\phi_{\rm p} = 0.1$, $C_{\rm rod}r_{\rm rod} = 3$, $C_{\rm p}r_{\rm rod} = 1$, and $\gamma = 0$. The membrane shown in Fig. 1(e) is used as the initial budded state.

Movie S3: Tubulation from a flat membrane at $\phi_{\rm rod} = 0.4$, $\phi_{\rm p} = 0$, $C_{\rm rod}r_{\rm rod} = 3$, and $\gamma = 0$.

Movie S4: Tubulation from a flat membrane at $\phi_{\rm rod} = 0.4$, $\phi_{\rm p} = 0.1$, $C_{\rm rod}r_{\rm rod} = 3$, $C_{\rm p}r_{\rm rod} = 3$, and $\gamma = 0$.

Movie S5: Tubulation from a flat membrane at $\phi_{\rm rod} = 0.4$, $\phi_{\rm p} = 0.1$, $\phi_{\rm n} = 0.1$, $C_{\rm rod}r_{\rm rod} = 2$, $C_{\rm p}r_{\rm rod} = 3$, $C_{\rm n}r_{\rm rod} = -3$, and $\gamma = 0$.

Movie S6: Tubule formation from a vesicle at $\phi_{\rm rod} = 0.1$, $\phi_{\rm p} = 0.1$, $C_{\rm rod}r_{\rm rod} = 3$, and $C_{\rm p}r_{\rm rod} = 3$.