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Estimation of �ber-�ber interaction strength by αC-regions

As explained in the main text, our �ndings indicate that �ber bond formation is mediated by noncovalent

interactions. We hypothesize that the αC-regions, two long and �exible chains which emanate from the distal

ends of each �brin monomer, are primarily responsible for this interaction, based on evidence from optical

tweezers experiments showing strong interactions of these chains at the single molecule level [1]. We can

estimate the total strength F of a bond between two adjacent �bers mediated by the two juxtaposed brushes

of αC-regions as: F = P ∗ fr ∗ d
lm
∗√np ∗ 2. Single-molecule force spectroscopy showed that two αC-regions

form bonds with a binding probability P of 62% and an average rupture force fr of 34 pN [1]). The ratio d
lm

is the �ber diameter d ≈ 100 nm divided by the length of the �brinogen monomer, lm = 45 nm [2], and gives

the number of monomers over the length of the interaction area. We multiply d
lm

by
√
np, where np is the

total number of proto�brils in a �ber cross section (around 65 [3]), to obtain an estimate of the total number
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of monomers per interaction area. Finally, the factor 2 takes into account that there are two αC-regions per

monomer.

This order-of-magnitude calculation predicts a binding strength of 760 pN. Is this number large enough

to make bond formation e�ectively irreversible even when �brin networks are subject to a mechanical shear?

To test this, we consider that for a 1% deformation of a �brin network with shear modulus 1700 Pa (1700 Pa

being the average modulus after a compression-decompression cycle for our networks) we need to apply a

17 Pa shear stress. Per characteristic area of 2 µm × 2 µm (where 2 µm is an estimate of the pore size,

or average area per �ber, based on [4]) we �nd that, to a �rst approximation, each �ber is subjected to an

average force of 68 pN. Thus, we �nd that the newly formed connections are much stronger than the forces

applied on the �bers, hence we can consider the new connections to be irreversible.
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Supplementary Movies

Supplementary Movie 1: Direct measurement of the interaction between two individual �brin

�bers by optical tweezers. A movie showing the entire time-lapse sequence of an optical tweezers exper-

iment. After capturing two �bers, one �ber is moved vertically and placed over the other �ber. The �rst

�ber is lowered again to bring it in contact with the horizontally oriented �ber. We con�rm that a bond is

formed between the two �bers by moving any of the four beads, generating �ber bending and an increase in

the trapping force. The diameter of the beads is 4.5 µm.

Supplementary Movie 2: Two junctions merging in our computational model of cohesive �brous

networks. A section of a simulated network during compression, starting from an initial state with no

applied axial strain to the moment where the �rst merging event occurs.
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Supplementary Figures

Supplementary Figure 1: The normal (axial) force Fn, exerted by the �brin network, equilibrates over time

t, after the network underwent a stepwise compression from a height h 0.9 mm to 0.8 mm. A small residual

normal force (see Fig. 4 in the main text) corresponds to the build-up of internal normal stresses. The

corresponding sample height h is shown in red.
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Supplementary Figure 2: Optical tweezer measurement of the interaction between two �brin �bers in the

presence of D004, a speci�c inhibitor for the cross-linker FXIII. The numbers above the �uorescence images

(left) correspond to time points indicated in the graph (right). The colours refer to the horizontally oriented

�ber (red) and the vertically oriented �ber (blue). The �bers spontaneously form a strong (>300 pN) bond,

indicating that bond formation does not require FXIII-mediated cross-linking.
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Supplementary Figure 3: Compression and decompression of a 1 mg/ml �brin gel, comparing cross-linked

and uncross-linked networks. The black line shows the response of a control network which s cross-linked

by FXIII, while the red line shows the response of a corresponding gel where FXIII-mediated cross-linking

is inhibited by adding D004. The initial sample height of the FXIII-inhibited gel was 0.5 mm; in order to

match the compression rate to the other experiments, where the initial height was always 1.0 mm initial, the

compressive speed was adjusted to 0.5 µm/s. Arrows indicate the sequence of the compression-decompression

steps.
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Supplementary Figure 4: Confocal microscopy under compression. Left column: x-y projections of a confocal

recording of 4 µm depth; right column: 4 µm x-z projections of a confocal recording of 4 µm depth. The

applied compressive strain is indicated above the respective images. In the right column, the glass cover slip

is located at the top of the projection. During decompression, a small residual strain of 3% remained, due

to glass bending. We observe no pronounced change in network structure after compression-decompression,

indicating that only a small fraction of new bonds is created. The scale bar is 10 µm.
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Supplementary Figure 5: Shear modulus as a function of compressive strain for a simulated network (κ̃ =

10−3, d = 0.001). The sti�ening is lower than in Fig. 3 in the main text due to the lower value of the

remodeling radius d. Another consequence of a low value of d is a relatively noisy signal since the number

of new bonds is very small: an average increase in cross-linker density of 1.3% in two runs of the simulation.

To this end, we averaged all data points within 5% strain intervals. Arrows indicate the sequence of the

compression-decompression steps.
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