Supporting Information

Shrinking microbubbles with microfluidics: mathematical modelling to control microbubble sizes

A. Salari, ade V. Gnyawali, cde I.M. Griffiths, f R. Karshafian, bde M.C. Kolios, bde and S.S.H. Tsaicdet

- ^b Department of Physics, Ryerson University, Toronto, Canada.
- ^c Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, Canada.
- ^d Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, Canada.
- ^e Keenan Research Centre, St. Michael's Hospital, Toronto, Canada.
- ^f Mathematical Institute, University of Oxford, Oxford, United Kingdom.
- † E-mail: scott.tsai@ryerson.ca

Location Along the Microchannel, (l/l_{total})

Fig. S1. Comparison of bubble shrinkage results along the microfluidic channel for a degassed PDMS device, and a saturated PDMS device left in atmospheric condition for 24 hours prior to usage. In these experiments, the aqueous liquid flow rate and air pressure are $3 \ \mu Lmin^{-1}$ and $25.5 \pm 1.5 \ kPa$, respectively. The vacuum pressure $P_v = 0$.

^a Biomedical Engineering Graduate Program, Ryerson University, Toronto, Canada.