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3D model and lattice-Boltzmann simulations

We model the liquid and gas phases as a binary
fluid, in which each phase is labelled using a phase field
o(x,y, z,t). The phase field varies continuously between
the two volume phases, which are separated by a diffuse
interface. In the same spirit, all other hydrodynamic vari-
ables, namely the density, p, viscosity, n, chemical poten-
tial, u, pressure, p, and velocity, v, vary smoothly across
the interface.

In equilibrium, the configuration of the two-phase sys-
tem is determined by the Helmholtz free-energy func-
tional [? ? ]

f:/V(Fb+gIV¢I2) dV+/S(ffs¢s)dS> (1)

where V is the total volume of the binary fluid and S is
the surface of the confining solid walls. The first term in
the volume integral corresponds to the bulk free-energy
density

P a5, by

glogp+ 507+ ¢ (2)
which contains an ideal gas term to ensure incompress-
ibility, where we have introduced the local mass density
of the fluid, p, and a double-well potential term in which
a and b are model parameters. With this choice of Fy,
phase separation occurs if ¢ < 0 and b > 0. The result-
ing two equilibrium phases have bulk phase field values
¢, = £+/—a/b. Here we fix b = —a and take ¢, = —1
to be the gas phase and ¢, = 41 to represent the liquid.
The square-gradient term in equation (1) represents the
energy cost of spatial variations of ¢ across the system.
In equilibrium, it leads to the formation of a diffuse in-
terface of typical width £ = /—2k/a and surface tension
v =+/—8ka/9.

The surface integral in equation (1) models the wet-
ting properties of the binary fluid, where ¢ represents
the value of the phase field at the solid surfaces. In equi-
librium, this term leads to the boundary condition

Ry =
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where n indicates the coordinate normal to the solid sur-
face. The parameter x5 can be tuned to control the con-
tact angle of the fluid-fluid interface with the solid, 6,
through the relation

cos 0 = % [(1 Q)2 - (1-0)?], (4)

where ) = kg4/1/Ka.

The phase-field approach can be used to model a phase
change by introducing an imbalance in the chemical po-
tential of the binary fluid, defined as

=T = ap 4 bgd - V%, (5)
o
An inhomogeneity in the chemical potential of local am-
plitude V p will give rise to a diffusive flux, leading to the
growth or depletion of the volume phases [? ]. To model
the diffusive flux, we use the constitutive equation

J=-MVy, (6)

where M, called the mobility, plays the role of a diffusion
constant. Imposing local conservation of the phase field
¢ leads to the convection-diffusion equation
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Apart from diffusive transport of the phase field, inho-
mogeneities in the chemical potential give rise to a force
per unit volume —¢V i acting on the fluid [? |. This term
amounts to capillary stresses originating from distortions
of the interface, and gives rise to the Laplace pressure of
a curved interface in the sharp-interface limit. Therefore,
the mass and momentum balance equations are

+v-Vé=MVpu. (7)

0

£+V.(pv):0, (8)
and
8(@;):) +(v-V)pv = —Vp+ V- -(n(Vv+VvT)) — V.

(9)

An important aspect of the diffuse-interface approach
is the ability to model contact-line dynamics. In sharp-
interface approximations, imposing the no-slip boundary
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condition at the contact line leads to a diverging viscous
stress [? ], commonly known as the Huh-Scriven para-
dox [? ]. In the phase-field model, this is regularized
by virtue of mass diffusion, which leads to a contact-
line slip velocity profile over a characteristic length scale
Ip = v/Mn [? ]. The emergent slip length is set by Ip
and shows the limiting scalings ls ~ v/Ip€ [? ] for Ip < &
and Iy ~ Ip [? ? ] for Ip > & with a cross over between
the two regimes occurring at Ip/€ ~ 0.4 [? ].

In order to integrate the phase-field model numerically
we use a Lattice-Boltzmann (LB) algorithm. Here we
summarize the simulation setup and focus on the sim-
ulation results. We refer the reader to Ref. [? | for
details of the numerical algorithm. We consider a rect-
angular simulation domain of dimensions L, X L, x L,
discretised into N lattice sites. The size of the simu-
lation domain was fixed using L, = 120, L, = 100 and
L. = 40. The cantilever dimensions, [ X w were set to
I =100 and w = 24, and the minimum gap thickness to
h = 10. In simulation units, the density and viscosity
of the fluid are set to p = 1 and n = 10~! throughout
the lattice. The bulk free-energy parameters are set to
—a =b=2305x10"3 and kK = 7.8 x 1073, giving a

surface tension v = 4.6 x 10™2 and an interface thickness
& = 1.13. The initial condition of the fluid-fluid system is
chosen by initializing the phase field to local equilibrium
values, ¢ = —1 for a gas site and ¢ = +1 for a liquid site.

Hard walls in the lattice Boltzmann algorithm are im-
plemented by means of the standard bounce back rules,
which recover the impenetrability and no-slip boundary
conditions. The interaction with the solid boundaries
is prescribed by locally fixing the surface energy pa-
rameter, ks, and enforcing the boundary condition (3).
For hydrophilic levers, we use kg = —2.8 x 1073, lead-
ing to 0, =~ 30°. To model hydrophobic levers we use
kg = 2.8 x 1073, which gives 6, ~ 150°.

To drive a phase change, we follow the algorithm pre-
sented in Ref. [? ] and fix the value of the phase field at
the left end of the simulation box to a prescribed value ¢q.
From (5) the local chemical potential is pg >~ agg + bdj,
while p &~ 0 at the interface, leading to a phase-change
rate Ey = [j|/A¢ ~ Mug/Adly, where A¢p = 2 is the
difference between the bulk values of the phase field and
lp is the average distance from the interface to the simu-
lation box edge. We use ¢9 = —1.2, which ensures that
the timescale of mass diffusion is fast compared to the
evaporation timescale of the front.
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