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3D model and lattice-Boltzmann simulations

We model the liquid and gas phases as a binary
fluid, in which each phase is labelled using a phase field
φ(x, y, z, t). The phase field varies continuously between
the two volume phases, which are separated by a diffuse
interface. In the same spirit, all other hydrodynamic vari-
ables, namely the density, ρ, viscosity, η, chemical poten-
tial, µ, pressure, p, and velocity, v, vary smoothly across
the interface.

In equilibrium, the configuration of the two-phase sys-
tem is determined by the Helmholtz free-energy func-
tional [? ? ]

F =

∫
V

(
Fb +

κ

2
|∇φ|2

)
dV +

∫
S

(κsφs)dS, (1)

where V is the total volume of the binary fluid and S is
the surface of the confining solid walls. The first term in
the volume integral corresponds to the bulk free-energy
density

Fb =
ρ

3
log ρ+

a

2
φ2 +

b

4
φ4, (2)

which contains an ideal gas term to ensure incompress-
ibility, where we have introduced the local mass density
of the fluid, ρ, and a double-well potential term in which
a and b are model parameters. With this choice of Fb,
phase separation occurs if a < 0 and b > 0. The result-
ing two equilibrium phases have bulk phase field values
φb = ±

√
−a/b. Here we fix b = −a and take φb = −1

to be the gas phase and φb = +1 to represent the liquid.
The square-gradient term in equation (1) represents the
energy cost of spatial variations of φ across the system.
In equilibrium, it leads to the formation of a diffuse in-
terface of typical width ξ =

√
−2κ/a and surface tension

γ =
√
−8κa/9.

The surface integral in equation (1) models the wet-
ting properties of the binary fluid, where φs represents
the value of the phase field at the solid surfaces. In equi-
librium, this term leads to the boundary condition

∂nφs = −κs
κ
, (3)
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where n indicates the coordinate normal to the solid sur-
face. The parameter κs can be tuned to control the con-
tact angle of the fluid-fluid interface with the solid, θe,
through the relation

cos θe =
1

2

[
(1 + Ω)3/2 − (1− Ω)3/2

]
, (4)

where Ω = κs
√

1/κa.
The phase-field approach can be used to model a phase

change by introducing an imbalance in the chemical po-
tential of the binary fluid, defined as

µ ≡ δF
δφ

= aφ+ bφ3 − κ∇2φ. (5)

An inhomogeneity in the chemical potential of local am-
plitude ∇µ will give rise to a diffusive flux, leading to the
growth or depletion of the volume phases [? ]. To model
the diffusive flux, we use the constitutive equation

j = −M∇µ, (6)

where M , called the mobility, plays the role of a diffusion
constant. Imposing local conservation of the phase field
φ leads to the convection-diffusion equation

∂φ

∂t
+ v ·∇φ = M∇2µ. (7)

Apart from diffusive transport of the phase field, inho-
mogeneities in the chemical potential give rise to a force
per unit volume−φ∇µ acting on the fluid [? ]. This term
amounts to capillary stresses originating from distortions
of the interface, and gives rise to the Laplace pressure of
a curved interface in the sharp-interface limit. Therefore,
the mass and momentum balance equations are

∂ρ

∂t
+ ∇ · (ρv) = 0, (8)

and

∂(ρv)

∂t
+ (v ·∇)ρv = −∇p+∇ · (η(∇v+∇vT))−φ∇µ.

(9)
An important aspect of the diffuse-interface approach

is the ability to model contact-line dynamics. In sharp-
interface approximations, imposing the no-slip boundary
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condition at the contact line leads to a diverging viscous
stress [? ], commonly known as the Huh-Scriven para-
dox [? ]. In the phase-field model, this is regularized
by virtue of mass diffusion, which leads to a contact-
line slip velocity profile over a characteristic length scale
lD =

√
Mη [? ]. The emergent slip length is set by lD

and shows the limiting scalings ls ∼
√
lDξ [? ] for lD � ξ

and ls ∼ lD [? ? ] for lD � ξ with a cross over between
the two regimes occurring at lD/ξ ≈ 0.4 [? ].

In order to integrate the phase-field model numerically
we use a Lattice-Boltzmann (LB) algorithm. Here we
summarize the simulation setup and focus on the sim-
ulation results. We refer the reader to Ref. [? ] for
details of the numerical algorithm. We consider a rect-
angular simulation domain of dimensions Lx × Ly × Lz,
discretised into N lattice sites. The size of the simu-
lation domain was fixed using Lx = 120, Ly = 100 and
Lz = 40. The cantilever dimensions, l × w were set to
l = 100 and w = 24, and the minimum gap thickness to
h = 10. In simulation units, the density and viscosity
of the fluid are set to ρ = 1 and η = 10−1 throughout
the lattice. The bulk free-energy parameters are set to
−a = b = 3.05 × 10−3 and κ = 7.8 × 10−3, giving a

surface tension γ = 4.6×10−3 and an interface thickness
ξ = 1.13. The initial condition of the fluid-fluid system is
chosen by initializing the phase field to local equilibrium
values, φ = −1 for a gas site and φ = +1 for a liquid site.

Hard walls in the lattice Boltzmann algorithm are im-
plemented by means of the standard bounce back rules,
which recover the impenetrability and no-slip boundary
conditions. The interaction with the solid boundaries
is prescribed by locally fixing the surface energy pa-
rameter, κs, and enforcing the boundary condition (3).
For hydrophilic levers, we use κS = −2.8 × 10−3, lead-
ing to θe ≈ 30◦. To model hydrophobic levers we use
κS = 2.8× 10−3, which gives θe ≈ 150◦.

To drive a phase change, we follow the algorithm pre-
sented in Ref. [? ] and fix the value of the phase field at
the left end of the simulation box to a prescribed value φ0.
From (5) the local chemical potential is µ0 ' aφ0 + bφ30,
while µ ≈ 0 at the interface, leading to a phase-change
rate E0 = |j|/∆φ ' Mµ0/∆φl0, where ∆φ = 2 is the
difference between the bulk values of the phase field and
l0 is the average distance from the interface to the simu-
lation box edge. We use φ0 = −1.2, which ensures that
the timescale of mass diffusion is fast compared to the
evaporation timescale of the front.
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