Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2017

Electronic Supporting Information

Surface immobilized Azomethine for Multiple Component Exchange

Michael Lerond,¹ Daniel Bélanger,^{2*} W. G. Skene^{1*}

¹Laboratoire de caractérisation photophysique des matériaux conjugués Département de Chimie, Pavillon JA Bombardier Université de Montréal, CP 6128, succ. Centre-ville Montréal, Québec, Canada H3C 3J7

²Département de Chimie, Université du Québec à Montréal, Case Postale 8888, succursale Centre-Ville, Montréal, Québec H3C3P8, Canada

Table of Contents

Figure S1. Component exchange of 2 monitored by ¹ H NMR in DMSO-d ₆ at 40° C: 2 (A), 2 with
equimolar 4-aminodinitrotriphenvlamine after 6 hrs (B), with the addition of a catalytic amount
of Sc(Otf) ₃ after 6 hrs (C), after 8 additional hours (D), and after 24 hrs (E). Inset: sample (E)
after the addition of 10 equivalents of 4-aminodinitrotriphenvlamine. The imine proton of $2(O)$
and 1 (Δ) are highlighted to illustrate dynamic component exchange
Figure S3 Square wave voltammograms of 1 (\blacksquare) 3 (\blacklozenge) and a mixture of 1 and 3 (\triangleright) in
degassed acetonitrile with 0.1 M TBAPE_{c} as the electrolyte
Figure SA Δ FM micrograph illustrating the surface roughness of native ITO coated glass
substrate (top) and 1s (bottom)
Eigure S5. Derticle size distribution of 1g on an ITO control gloss substrate
Figure S5. Faiture size distribution of 18 on an 110 coaled glass substrate
Figure So. Cyclic voltaminograms of a glassy carbon electrode before (black) and after immediation of K (Eq.(N)) and 5 mM K (Eq.(N)) with 0.1 M KCl
immobilizing 4s (red) in 5 mivi solution of $K_3[Fe(CN)_6]$ and 5 mivi $K_4[Fe(CN)_6]$ with 0.1 M KCl
at pH=5 at 100 mV/s. $/$
Table S1. ToF-SIMS data. 8
Table S2. XPS data expressed in atomic percentages
Figure S7. XPS survey spectrum of 4s
Figure S8. XPS survey spectrum of 3s 10
Figure S9. XPS survey spectrum of 2s prepared by component exchange of 1s 10
Figure S10. XPS survey spectrum of 3s prepared by component exchange of 1s
Figure S11. Synthetic scheme for the preparation of the reactive intermediate leading to 4s: i)
ethylene glycol, p-toluene sulfonic acid, anhydrous toluene, 120°C, overnight, and ii) PtO ₂ ,
MgSO ₄ , THF/EtOH, H ₂ 70 psi 11
Figure S12. ¹ H-NMR spectrum of 1,3-dioxolane-4-benzenamine (7) recorded in acetone-d ₆ 12
Figure S13. ¹³ C-NMR spectrum of 1,3-dioxolane-4-benzenamine (7) recorded in acetone- d_6 13
Figure S14. ¹ H-NMR spectrum of <i>N</i> -phenyl-1-(<i>p</i> -tolyl)methanimine (2) recorded in acetone- d_6 .
Figure S15. ¹³ C-NMR spectrum of <i>N</i> -phenyl-1-(<i>p</i> -tolyl)methanimine (2) recorded in acetone- d_6 .
15
Figure S16. ¹ H-NMR spectrum of 1.3-dioxolane-4-nitrobenzaldehvde (6) recorded in acetone-d ₆ .
16
Figure S17 13 C-NMR spectrum of 1.3-dioxolane-4-nitrobenzaldehyde (6) recorded in acetone-
d_c 17
Figure S18 ¹ H-NMR spectrum of N-dinitrotriphenylamine-1- $(n-tolyl)$ methanimine (1) recorded
recorded in agetone d
Figure S10 ¹³ C NMD spectrum of N disituatinheaviening 1 (n talvi)methaniming (1) recorded
Figure S19. C-NVIR spectrum of <i>N</i> -dimutourphenylamine-1- $(p$ -toryr)methalimine (1) recorded
In acetone- \mathbf{a}_6
Figure S20. H-NMR spectrum of N-terrocene-1-(p-tolyl)methanimine (3) recorded in acetone-
d_6
Figure S21. ¹³ C-NMR spectrum of <i>N</i> -ferrocene-1-(<i>p</i> -tolyl)methanimine (3) recorded in acetone-
d ₆
Figure S22.'H-NMR spectrum of N,N-bis(4-nitrophenyl)-1,4-phenylenediamine recorded in
acetone-d ₆
Figure S23. ¹³ C-NMR spectrum of N,N-bis(4-nitrophenyl)-1,4-phenylenediamine recorded in
acetone-d ₆

Figure S1. Component exchange of **2** monitored by ¹H NMR in DMSO-d₆ at 40° C: **2** (A), **2** with equimolar 4-aminodinitrotriphenylamine after 6 hrs (B), with the addition of a catalytic amount of Sc(Otf)₃ after 6 hrs (C), after 8 additional hours (D), and after 24 hrs (E). Inset: sample (E) after the addition of 10 equivalents of 4-aminodinitrotriphenylamine. The imine proton of **2** (\bigcirc) and **1** (\triangle) are highlighted to illustrate dynamic component exchange.

Figure S2. Cyclic voltammograms of $1 (\blacksquare), 2 (\bullet), 3 (\diamond), 4 (\blacktriangle)$ and *N*,*N*-bis(4-nitrophenyl)-1,4-phenylenediamine (\bigtriangledown) in degassed acetonitrile with TBAPF₆ (0.1 M) as the electrolyte and ferrocene (0.1 mM) as internal reference measured at 100 mV/s, [C]=0.1 M.

Figure S3. Square wave voltammograms of $1 (\blacksquare)$, $3 (\diamondsuit)$ and a mixture of 1 and $3 (\triangleright)$ in degassed acetonitrile with 0.1 M TBAPF₆ as the electrolyte.

Figure S4. AFM micrograph illustrating the surface roughness of native ITO coated glass substrate (top) and **1s** (bottom).

Figure S5. Particle size distribution of 1s on an ITO coated glass substrate.

Figure S6. Cyclic voltammograms of a glassy carbon electrode before (black) and after immobilizing **4s** (red) in 5 mM solution of $K_3[Fe(CN)_6]$ and 5 mM $K_4[Fe(CN)_6]$ with 0.1 M KCl at pH=5 at 100 mV/s.

Table S1. ToF-SIMS data.

Molecular	Mass	Compound								
formula	Center									
	(u)									
			(4 s)	(2s)						
		Peak intensity								
C ₉ H ₉ O ⁻	133.0664	1.5×10^{-4}	7.9x10 ⁻⁵		4.6×10^{-5}					
$C_7H_5O^+$	105.0357	1.1×10^{-3}	1.7×10^{-3}		3.8×10^{-4}					
$C_{7}H_{4}^{+}$	88.0284	1.5×10^{-4}	4.7×10^{-4}	8.3x10 ⁻⁴	2.1x10 ⁻⁴					
$C_6H_4N^+$	90.0326			3.2×10^{-4}						
$C_6H_4N^-$	90.0328			8.5x10 ⁻⁴						
$C_{6}H_{5}^{+}$	77.0384			7.6x10 ⁻³						
$C_7H_6N^+$	104.0536			$8.9 \text{x} 10^{-4}$	7.5x10 ⁻⁴					
$C_7H_7N^+$	105.0592			6.2x10 ⁻⁴						
$C_{7}H_{7}^{+}$	91.0538			2.8×10^{-3}	1.7×10^{-3}					
$C_{10}H_9Fe^+$	184.9987				6.7x10 ⁻⁴					
$C_{10}H_{10}Fe^+$	186.0093				2.6×10^{-3}					
$C_{10}H_{11}NFe^+$	201.0337				4.8×10^{-3}					
$C_{13}H_{10}N^+$	180.0837			2.6×10^{-4}						
$C_{17}H_{14}NFe^+$	288.0539				4.9x10 ⁻⁵					

Name	BE (eV)	Assigned	ITO ^a		сно (4s)	2s	1s ^b		3s ^c		1s→2s ^d	$1s \rightarrow 3s^{e}$	
				obs'd	obs'd	obs'd	obs'd	calc'd	obs'd	calc'd	obs'd	obs'd	calc'd
C1S	285.0	C-C, C=C	48.1	51.0	46.5	45.2	44.5		33.3		46.9	42.1	
	285.6	C-N				9.1	5.5	2.1	4.7	0.6	7.1	5.0	1.3
	286.5	C-O, C-O-C	7.0	17.7	12.6	11.3	11.4		10.2		11.0	9.8	
	287.9	С=О, О-С-О		4.8	4.1	4.9	3.9		6.3		5.0	4.9	
	289.2	O-C=O	4.0	2.5	5.0	2.0	3.9		3.9		2.5	4.1	
	291.2	$\pi \Rightarrow \pi^*$ from C=C		0.6	0.9	7.5	0.7				0.8		
N1S	399.5	C-N, C=N, N=N		1.2	0.7	4.0	1.3	2.4	1.0	1.2	3.1	0.8	1.6
	402.6	N+		1.1	0.3	2.0			0.5		1.1	1.0	
	406.3	NO ₂					0.7	ref ^f				0.4	ref ^{f,g}
015	530.5	In-O, Sn-O	21.0	1.9	2.1	2.6	1.4		1.9		1.4		
	531.9	C=O, In-OH, Sn-OH	14.4	6.9	9.0	5.2	7.8		10.5		5.7	11.7	
	532.9	С-О, С-О-С		8.8	12.5	10.9	11.7		9.7		11.5	9.4	
	533.3	C-O	5.5										
	533.8	$O-C=O, NO_2$		2.2	4.9	2.0	5.5	1.4	3.7		2.6	3.8	0.8
Fe2p3/2	708.0	ferrocene							0.6	ref ^f		0.1	ref ^f
	710.3	Iron oxide							2.0			0.7	

Table S2. XPS data expressed in atomic percentages.

obs'd=observed; calc'd=calculated. ITO substrate cleaned by successive sonications in acetone, ethanol, and water, followed by air drying. ^b Average of two different samples. ^c Average of three different samples. ^d Exchanged by submerging the substrate in aniline with catalytic *p*TSOH overnight. ^e Exchanged by submerging the substrate in dichloromethane solution of aminoferrocene overnight. ^f Used as the reference to calculate the expected atomic percentages. ^g The reference takes into account $2xNO_2$ per **1s**.

Figure S7. XPS survey spectrum of 4s.

Figure S8. XPS survey spectrum of 3s.

Figure S9. XPS survey spectrum of **2s** prepared by component exchange of **1s**.

Figure S10. XPS survey spectrum of **3s** prepared by component exchange of **1s**.

Figure S11. Synthetic scheme for the preparation of the reactive intermediate leading to **4s**: i) ethylene glycol, *p*-toluene sulfonic acid, anhydrous toluene, 120° C, overnight, and ii) PtO₂, MgSO₄, THF/EtOH, H₂ 70 psi.

Figure S12. ¹H-NMR spectrum of 1,3-dioxolane-4-benzenamine (7) recorded in acetone-d₆.

Figure S13. ¹³C-NMR spectrum of 1,3-dioxolane-4-benzenamine (7) recorded in acetone-d₆.

Figure S14. ¹H-NMR spectrum of *N*-phenyl-1-(*p*-tolyl)methanimine (**2**) recorded in acetone-d₆.

Figure S15. ¹³C-NMR spectrum of *N*-phenyl-1-(*p*-tolyl)methanimine (**2**) recorded in acetone-d₆.

Figure S16. ¹H-NMR spectrum of 1,3-dioxolane-4-nitrobenzaldehyde (6) recorded in acetone-d₆.

Figure S17. ¹³C-NMR spectrum of 1,3-dioxolane-4-nitrobenzaldehyde (6) recorded in acetone-d₆.

Figure S18. ¹H-NMR spectrum of *N*-dinitrotriphenylamine-1-(*p*-tolyl)methanimine (1) recorded recorded in acetone-d₆.

Figure S19. ¹³C-NMR spectrum of *N*-dinitrotriphenylamine-1-(*p*-tolyl)methanimine (1) recorded in acetone-d₆.

Figure S20. ¹H-NMR spectrum of *N*-ferrocene-1-(*p*-tolyl)methanimine (**3**) recorded in acetone-d₆.

Figure S21. ¹³C-NMR spectrum of *N*-ferrocene-1-(*p*-tolyl)methanimine (**3**) recorded in acetone-d₆.

Figure S22.¹H-NMR spectrum of *N*,*N*-bis(4-nitrophenyl)-1,4-phenylenediamine recorded in acetone-d₆.

Figure S23.¹³C-NMR spectrum of *N*,*N*-bis(4-nitrophenyl)-1,4-phenylenediamine recorded in acetone-d₆.