Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2017

Electronic supplementary information (ESI)

Visible-light/temperature dual-responsive hydrogel constructed by α-

cyclodextrin and an azobenzene linked surfactant

Jiao Wang,^a Qintang Li, ^b Sijing Yi, ^a Xiao Chen*,^a

^a Key Laboratory of Colloid and Interface Chemistry, Shandong University Ministry of Education,

Jinan, 250100, China

^b State Key Laboratory of Cultivation Base for Nonmetal Composites and Functional Materials,

School of Materials Science and Engineering, Southwest University of Science and Technology,

Mianyang, 621010, China

*Corresponding author: Xiao Chen

Address: Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of

Education, Jinan, 250100, China

E-mail:xchen@sdu.edu.cn.

Tel.: +86–531–88365420.

Fax: +86–531–88564464.

Fig. S1 B3LYP/6-31G (d, p)-optimized structure of a *trans*-DAH.

Fig. S2 ¹H NMR Job's plot corresponding to the chemical shift of H-5 of α -CD in D₂O. [DAH]+[α -CD]=15 mM.

Fig. S3 Representative sample appearance images of DAH@2 α -CD at different concentrations: (a) 5 mM, (b) 15 mM, (c) 30 mM, (d) 60 mM, and the individual component of DAH (30 mM, e) and α -CD (60 mM, f).

Fig. S4. FTIR spectra of pure α -CD, DAH, xerogel and hydrogel at 30 mM in D₂O.

Fig. S5 Visual appearance of gel-sol transition caused by addition of urea.

Fig. S6 Visual appearance of hydrogel upon UV light (350 or 365 nm) irradiation.

Fig. S7 UV-Vis spectra of 8 mM DAH in aqueous solution before and after UV-365 nm light irradiation.

Fig. S8 UV-Vis spectra of 8.0 mM DAH at different times of visible light (420 nm) irradiation and stirring

in the dark.

Fig. S9 Tapping-mode AFM images of a 30 mM sample at 35 (a) and 50 $^\circ$ C (b).

AFM measurements were conducted by a Nanoscope IIIA from Digital Instruments in tapping mode under ambient conditions. For the sample preparation, 20 μ L of aggregate solution was placed on a freshly cleaved mica surface and the excess was removed by absorption onto filter paper. The resultant substrates were dried under vacuum.

Fig. S10. Viscosity-shear rate curves (a) and viscosity changes (b) for a 30 mM sample at different

temperatures.