Supporting Information

Effects of pH on structure and mechanical property of dried pH-responsive latex particles

Takafumi Sekido¹, Michael Kappl², Hans-Jürgen Butt², Shin-ichi Yusa³ Yoshinobu Nakamura^{4,5}, Syuji Fujii^{4*}

 ¹ Division of Applied Chemistry, Graduate School of Engineering Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku Osaka, 535-8585, Japan.
 ²Physics at Interfaces Group, Max-Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany.
 ³Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo 2167 Shosha, Himeji, Hyogo 671-2201
 ⁴Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku Osaka 535-8585, Japan.
 ⁵Nanomaterials Microdevices Research Center Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku Osaka 535-8585, Japan.

* Author to whom correspondence should be addressed (<u>syuji.fujii@oit.ac.jp</u>)

Gel permeation chromatography (GPC)

GPC analysis was performed using a refractive index (RI) detector equipped with a Shodex Ohpak SB-G guard column and SB–804 HQ column (bead size = 10 μ m, exclusion limit: $M_n = 1.0 \times 10^6$, pullulan) working at 40 °C under a flow rate of 0.6 mL/min. 0.3 M Na₂SO₄ aqueous solution containing 0.5 M acetic acid was used as an eluent. The molecular weight of the sample polymer was calibrated with standard poly(2-vinylpyridine) samples of 6 different molecular weights ranging from 5.70 × 10³ to 3.16×10^5 g/mol.

Fast Fourier transform analysis

A fast Fourier transform (FFT) analysis of the SEM image of the dried particulate materials was conducted using ImageJ software (National Institutes of Health, USA).

Table S1. Volume-average (D_v) and number-average (D_n) diameters and diameter distributions data for the PDEA-PS latex particles used in this study

	Media	$D_{ m v}$ / $\mu{ m m}$	$D_{ m n}$ / $\mu{ m m}$	$D_{\rm w}$ / $D_{\rm n}$
PDEA-PS	IPA	2.50±0.63	2.24	1.01
PDEA-PS	water	2.59±0.77	2.20	1.01

Figure S1. (a) Scheme for the fracture test of the samples using the universal testing machine. Rectangular slabs of dried particular matter were placed across a slit and then indented from top with a metal blade with a speed of 2 mm/min until fracture occured. (b) Images of the slit and the metal blade.

Figure S2. Optical microscopy images of aqueous dispersion of PDEA-PS latex particles: (a) pH 3.0 (b) 6.3 and (c)10.0. pH was adjusted using HCl or NH_3 aqueous solution.

Figure S3. (a, b) Digital photographs of PDEA-PS particles sedimented in aqueous media with pH 10.0, and (b, f) digital photographs and (c, d, g, h) SEM images of dried PDEA-PS particulate materials: (a-d) without and (e-h) with centrifugal force (1355 g). Cross section images of the dried particulate materials: (c, g) Upper parts and (d, h) lower parts. The volume of the sediment decreased to approximately 77 % based on that without the application of centrifugal force. We confirmed that the PDEA-PS particles formed randomly-packed structure after the application of centrifugal force in dried particulate materials, which is the reason why the volume of the sediment did not decrease to 44%, where hexagonally close-packed arrangement is attained: 9.8 mm / 22.1 mm×100%.

Figure S4. SEM images of PDEA-PS particles at the air-water surface (a, c) pH 3.0 and (b, d) pH 10.0. (a, b) air-exposed and (c, d) water-exposed side of the films.

Figure S5 Fast Fourier transform (FFT) analysis of the SEM images of the dried particulate materials shown in Figures 5d-f and insets of Figures 7d-i: (a-c) surface and (d-i) cross-section of the materials dried at (a,d,g) pH 3.0, (b,e,h) pH 6.3 and (c,f,i) pH 10.0. (d-f) Upper middle parts and (g-i) lower parts of the dried particulate materials.