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I. SUPPORTING INFORMATION

A. Solvation free energy and its minimization procedure

Here we present the details of theoretical model omitted in the main text. We start from

the solvation free energy of the polymer chain in the mixed solvent media

∆Gs = Fid + Fex + PVg − µsNs − µcNc,

where Vg = 4πR3
g/3 is the volume of gyration of the polymer chain, Rg is the chain gyration

radius, Ns and Nc are, respectively, the molecule numbers of the solvent and co-solvent in

the gyration volume; Fid is the ideal free energy of the polymer chain and mixed solvent

which can be calculated in the following way
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g
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s
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c

Vg
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)
, (1)

where b is the bond length of the chain, kB is the Boltzmann constant, N is the

polymerization degree, T is the absolute temperature, Λs and Λc are the de Broglie

wavelengths of the low-molecular weight species. The �rst term in (1) is the free energy

of the ideal Gaussian polymer chain within the Fixman approximation [1�12]; P is the

pressure imposed to the system which will be determined below. The interactions 'monomer-

monomer', 'monomer-solvent', 'solvent-solvent', 'co-solvent-co-solvent', and 'solvent-co-

solvent' are described by the WCA potentials

Vij(r) =

 4εij

[
1
4

+
(σij
r

)12 − (σij
r

)6]
, r < 21/6σij

0, r > 21/6σij

 .

Interaction monomer-co-solvent is described by the full Lennard-Jones potential

Vpc(r) = 4εpc

[(σpc
r

)12
−
(σpc
r

)6]
. (2)

Therefore, the excess free energy of polymer solution takes the form

Fex = Fev + Fatt, (3)

where Fev is the contribution of the repulsive interactions in the gyration volume due to

the excluded volume of the monomers and molecules of the low-molecular weight species
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which we determine through the Mansoori-Carnahan-Starling-Leland equation of state for

the hard-spheres mixture (see below) with the e�ective diameters of species calculated in

accordance with a well-known Barker-Henderson relation [14]:

di =

∫ 21/6σii

0

(
1− e−Vii(r)/kBT

)
dr, (4)

where i = p, s, c.

As it was mentioned in the main text, our model is fully corresponded to situation

realized in MD simulation of Mukherji et al. [15]. Thereby, we neglected the attractive

interactions 'solvent-solvent', 'solvent-co-solvent', 'solvent-monomer', 'co-solvent-co-solvent',

and 'monomer-monomer', taking into account attractive interaction only between polymer

and co-solvent within the standard mean-�eld approximation:

Fatt = ρpρcVg

∫
drΦpc(|r|) = −32

9

√
2πεpcσ

3
pcρpρcVg, (5)

where Vg = 4πR3
g/3 is the gyration volume, ρp and ρc are, respectively, the number densities

of monomers and co-solvent in the gyration volume; attractive part of the full Lennard-Jones

potential according to the Weeks-Chandler-Anderson scheme [14] is

Φpc(r) =

 −εpc, r < 21/6σpc

4εpc

[(σpc
r

)12 − (σpc
r

)6]
, r > 21/6σpc

.

Choosing the local mole fraction of co-solvent x1 in the gyration volume and the gyration

radius Rg as the order parameters, one can rewrite the solvation free energy in the following

way

∆Gs(Rg, x1) =
9
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kBT
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+ρ1VgkBT
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+Vg (P (ρ, x, T ) + fex(ρ, x1, ρp, T )− ρ1 (µs(ρ, x, T )(1− x1) + µc(ρ, x, T )x1)) , (6)

where ρp = N/Vg is a monomer number density and fex(ρ, x1, ρp, T ) is a density of excess

free energy which has a form

fex(ρ, x1, ρp, T ) = ρkBTA(ρ, x1, ρp)−
32

9

√
2πεpcσ

3
pcρpρ1x1, (7)

where the following short-hand notations are introduced

A(ρ, x1, ρp) = −3

2
(1− y1(ρ, x1, ρp) + y2(ρ, x1, ρp) + y3(ρ, x1, ρp))+

3y2(ρ, x1, ρp) + 2y3(ρ, x1, ρp)

1− ξ(ρ, x1, ρp)
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+
3
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3

)
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+ (y3(ρ, x1, ρp)− 1) ln(1− ξ(ρ, x1, ρp)), (8)

y1(ρ, x1, ρp) = ∆cp
dc + dp√
dpdc

+ ∆sp
ds + dp√
dpds

+ ∆sc
ds + dc√
dcds

, (9)
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)
, (10)
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(11)
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dsdp
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ρ
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ρ1ρpx1

ρ
, (12)
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√
ξcξs
ξ

(dc − ds)2

dcds

ρ1
ρ

√
x1(1− x1) (13)

ξs =
πρ1(1− x1)d3s

6
, ξc =

πρ1x1d
3
c

6
, ξp =

πρpd
3
p

6
, (14)

ξ = ξ(ρ, x1, ρp) = ξs + ξc + ξp; (15)

the local solvent composition x1 in the gyration volume is introduced by the following

relations

ρs =
Ns

Vg
= ρ1(1− x1), ρc =

Nc

Vg
= ρ1x1. (16)

The local number density ρ1 of binary mixture can be related with the bulk number density

ρ and the monomer number density ρp through the incompressibility condition ρ1 = ρ− ρp.

The pressure in the bulk solution P in our model is determined by the the Mansoori-

Carnahan-Starling-Leland equation of state:

P (ρ, x, T )

ρkBT
=

1 + ξ(ρ, x, 0) + ξ2(ρ, x, 0)− 3ξ(ρ, x, 0)(y1(ρ, x, 0) + y2(ρ, x, 0)ξ(ρ, x, 0) + ξ2(ρ,x,0)y3(ρ,x,0)
3

)

(1− ξ(ρ, x, 0))3
.

(17)

The chemical potentials of the solvent species can be calculated by the following obvious

thermodynamic relations

µc(ρ, x, T ) =
1

ρ

(
P (ρ, x, T ) + f(ρ, x, T ) + (1− x)

(
∂f(ρ, x, T )

∂x

)
ρ,T

)
, (18)

µs(ρ, x, T ) =
1

ρ

(
P (ρ, x, T ) + f(ρ, x, T )− x

(
∂f(ρ, x, T )

∂x

)
ρ,T

)
, (19)
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where f(ρ, x, T ) is a density of Helmholtz free energy of the bulk solution which can be

calculated as

f(ρ, x, T ) = ρkBT
(
x ln

(
ρΛ3

cx
)

+ (1− x) ln
(
ρΛ3

s(1− x)
))

+ ρkBTA(ρ, x, 0). (20)

B. Connection with Flory theory

Here we present how our approach can be related to the classic Flory theory of a single

�exible polymer chain in a good solvent. We rewrite the Gibbs free energy as follows:

∆Gs =
9

4
kBT

(
6R2

g

Nb2
+
Nb2

6R2
g

)
+ Vg (fmix + P − µsρ1(1− x1)− µcρ1x1) , (21)

where fmix is the free energy density of three-component mixture of unbound particles. We

consider the regime of expanded coil, i.e., when 6R2
g/(Nb

2) � 1 and x1 ' x. In this case,

the internal monomer number density is small, i.e ρp � ρ, so that ρ1 ' ρ. Hence, we get in

this approximation

fmix(ρ, x1, ρp, T ) = f(ρ, x, T ) +
1

2
B(ρ, x, T )ρ2p +O(ρ3p), (22)

where the second virial coe�cient

B(ρ, x, T ) =
∂2fmix(ρ, x, 0, T )

∂ρ2p
(23)

is introduced and f(ρ, x, T ) is determined by (20). Further, taking into account that f +

P − µsρ(1 − x) − µcρx = 0, we arrive at the relation for the single chain free energy [16]

which depends on the state parameters of solvent mixture only through the second virial

coe�cient of monomers B:

∆Gs = Fp(Rg) =
9

4
kBT

(
6R2

g

Nb2
+
Nb2

6R2
g

)
+
B(ρ, x, T )N2

2Vg
. (24)

Minimization of the polymer free energy with respect to the gyration radius yields the classic

Flory result

Rg ∼ b2/5B1/5N3/5. (25)
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