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1. Check for the absence of finite-size effects 

We have performed calculations to show that there is no problem with finite size in the ‘infinite’ 

systems (first Results section of the manuscript). In Fig. S1, one can see an example of the absence of 

finite-size effects, comparing the experimental structure factor (20%, polydispersity 15%) of systems 

with 1000 and 8000 spheres. The smaller system is thus twice as small in any given direction, and q0 is 

thus twice as big – this effect is also visible in Figure 1a. The agreement shows that there is no 

noticeable finite size effect, in spite of the very small system size.  
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Fig. S1 Log-log plot of the experimental structure factor S(q) as a function of wave vector q for an “infinite” HS 

ensemble (R0 = 10 nm, σ = 15%, volume fraction 20%v) with 1000 and 8000 spheres. 
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2. Additional simulated structure factors 

Two series of simulated structure factors as a function of polydispersity σ are shown in Fig. S2 for 

additional volume fractions, κ.  
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Fig. S2 Log-log plot of the experimental structure factor S(q) as a function of wave vector q for an “infinite” HS 

ensemble (R0 = 10 nm) with polydispersity σ ranging from 0 to 45% as given in the legend. (a) κ = 10%, (b) κ = 
30%. 

 

Two series of simulated structure factors as a function of volume fraction κ are shown in Fig. S3 for 

two polydispersity values, σ = 15% and 30%.  

0.1

1

0.001 0.01 0.1

5%

20%

12.5%
15%

25%

17.5%

7.5%

30%
35%
40%

10%

22.5%

a) σ = 15%

q (Å-1)

S
(q

)

   

0.1

1

0.001 0.01 0.1

S
(q

)

q (Å-1)

b) σ = 30%

 

Fig. S3 Log-log plot of the experimental structure factor S(q) as a function of wave vector q for an “infinite” HS 

ensemble (R0 = 10 nm) with volume fraction κ ranging from 0 to 40% as given in the legend. (a) σ = 15%, (b) σ 
= 30%. 
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3. Variation of the aggregate shape 

The depth of the correlation hole is estimated using well-defined aggregates contained in a sphere, 

with the side effect of form factor oscillations. Due to the oscillations, there is some error bar on the 

estimation of the depth of the correlation hole – given by the second local minimum –, which has been 

illustrated by a black line in Figure 3, as a guide to the eye. We have performed calculations with 

different shapes (cubes, spheres, cylinders) of aggregates, providing an idea of the robustness of our 

estimation. The results are shown in Fig. S4. 
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Fig. S4 Log-log plot of structure factors S(q) as a function of wave vector q for finite HS systems (R0 = 10 nm, σ 
= 15%, κ = 20%, Nagg = 200) with different geometries as indicated in the legend. 

 

4. Variation of the spherical HS system size 

We have checked that the mapping procedure can also be applied to small aggregates by progressively 

reducing the size of the spherical subset in the simulation box. For small aggregates, one may wonder 

by how much the correlation hole analysis is influenced by the low-q upturn associated with the 

aggregate size. We have therefore performed a series of simulations of different NP numbers in the 

subset, from Nagg = 25 to 950, mimicking changes in aggregate size. All other parameters were kept 

constant (R0 = 10 nm, σ = 15%, κ = 20%). The resulting S(q) are shown in Fig. S5. The global 

minimum of S(q) is seen to be robust. 
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Fig. S5 Influence of size on structure factors S(q) of finite spherical HS systems (R0 = 10 nm, σ = 15%, κ = 
20%). Parameters: Nagg = 25 to 950 NPs as indicated in the legend. (a) Full scale, (b) zoom to the correlation 
hole. 

 

5. Aggregate construction algorithm 

Aggregates of different density have been simulated by imposing different numbers of direct 

neighbors during aggregate construction. The starting point is the algorithm used in ref. 1 (see A1 

below), where Nagg polydisperse spheres obeying the log-normal size distribution (R0 = 10 nm, σ = 

15%) are successively placed in contact, starting with a first particle located at the origin, in a random 

direction. In the model calculations in this paper, Nagg has been set to 200. Each new particle is placed 

in contact with any of the previously placed ones, chosen according to the rules below. Both the 

coordination number (i.e., the number of neighbors placed in exact contact) and the excluded volume 

(i.e., no collisions) are then checked, giving the following possible construction algorithms of different 

densities: 

A1: The particle is placed next to a randomly chosen particle. The coordination number is left free, 

only the excluded volume is checked. In case of collision, a new position of the particle – including 

the random choice of its neighbor – is tried. This gives the open, low-density structures as shown in     

Fig. 7.  

A2: The particle is placed next to a randomly chosen particle (without any constraint on coordination), 

but in case of collision, its position around that particle is (randomly) optimized to fit in the additional 

particle. This increases the local density. 

A3: As with A2, but with control of the maximum allowed coordination number (Cmax) of each 

particle. Particles can only be placed next to particles not reaching the Cmax. Setting Cmax to two allows 
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simulating self-avoiding chains, whereas denser aggregates are obtained with higher Cmax (varying 

from 3 to 7). 

A4: As with A2=A3, but with a reinforced local density by enforcing positioning next to particles with 

the highest possible coordination number (the final value staying ≤ Cmax). This is done by establishing 

a list of coordination numbers, and choosing randomly from the particles with C = Cmax – 1 (resp. - 2, - 

3 if needed). This construction algorithm leads to the densest aggregates, shown in Fig. 8a.   

 

In the main article, comparisons with aggregates made according to the different algorithms (A1-A4) 

are discussed, with a fixed aggregation number of 200. In order to explore also this parameter, non-

spherical aggregates using algorithm A2 have been made containing Nagg = 50, 100, 200, 400, and 800 

particles. As usual, structure factors and local densities κagg have been determined as averages over 

hundreds of aggregates. The results are added in Fig. 8b in the main article. The bigger the aggregates, 

the denser they become, and the less their specific surface and thus number of particles located at the 

border. This results in an increase in density with size. The structure factors of these aggregates are 

plotted in Fig. S6. 
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Fig. S6 Evolution of S(q) of aggregates of different sizes (Nagg = 50 to 800, all A2). Inset: 3D snapshot of 
aggregates with 50 and 800 particles (polydispersity is not graphically represented).  

 

6. Use of the unified scattering law proposed by Beaucage 

In Fig. S7, we have applied a two-level model with and without correlations 2 to our data in Figure 7a. 

The first level is defined by the nanoparticle (1: R0 = 10 nm, σ = 15%) with a radius of gyration Rg,1 
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given by (3/5 <R1>
8/<R1>

6)0.5 = 9.1 nm. The second level corresponds to the aggregate with a fractal 

dimension df = 2.5 and a Guinier radius R2 = 104.6 nm (Rg,2 = 81 nm), as obtained from the fit. The 

ratio between the prefactors of both Guinier contributions (dotted lines in Fig. S7) gives the number of 

particles within the aggregate: Nagg = I2/I1 = 200. One can see in Fig. S7a that a purely fractal law does 

not describe the correlation hole. In Fig. S7b, the correlation term with a correlation length of 20 nm 

and a local density of 15% (packing fraction = 1.2) approaches the experimental curve somewhat in 

the intermediate q-range. Note that alternative choices of up to 25% (packing fraction = 2.0) are also 

possible.  
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Fig. S7 Description of the scattered intensity of Figure 7a for simulated aggregates of Nagg = 200 polydisperse 
NPs (R0 = 10 nm, σ = 15%) by a two-level model without (a) and with (b) correlations (df = 2.5, correlation 
length = 20 nm, packing fraction = 1.2) as proposed by Beaucage 2. Dotted lines represent the Guinier 
contribution of each level.  
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