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ELECTRONIC SUPPLEMENTARY INFORMATION

1. Check for the absence of finite-size effects

We have performed calculations to show that therad problem with finite size in the ‘infinite’
systems (first Results section of the manuscriptlig. S1, one can see an example of the absdnce o
finite-size effects, comparing the experimentalicure factor (20%, polydispersity 15%) of systems
with 1000 and 8000 spheres. The smaller systehugstivice as small in any given direction, agdsq
thus twice as big — this effect is also visibleFigure 1a. The agreement shows that there is no

noticeable finite size effect, in spite of the vemgall system size.

S(a)

2L . L . L
0.001 0.01 0.1
q (A%

Fig. S1 Log-log plot of the experimental structure facgfg) as a function of wave vector q for an “infalitHS
ensemble (R= 10 nm,0 = 15%,volume fraction 20%v) with 1000 and 8000 spheres.
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2. Additional smulated structurefactors

Two series of simulated structure factors as atfonof polydispersitys are shown in Fig. S2 for

additional volume fraction.
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Fig. S2 Log-log plot of the experimental structure facg{g) as a function of wave vector q for an “infaiiHS
ensemble (R= 10 nm) with polydispersity ranging from 0 to 45% as given in the legef@ x = 10%,(b) k =

30%.

Two series of simulated structure factors as atfon®f volume fractiork are shown in Fig. S3 for

two polydispersity valuesy = 15% and 30%.
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Fig. S3 Log-log plot of the experimental structure facg{g) as a function of wave vector g for an “infaliHS
ensemble (R= 10 nm) with volume fractior ranging from 0 to 40% as given in the legef@.c = 15%,(b) o

= 30%.
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3. Variation of the aggr egate shape

The depth of the correlation hole is estimated qisirell-defined aggregates contained in a sphere,
with the side effect of form factor oscillationsu®to the oscillations, there is some error bathen

estimation of the depth of the correlation holeverg by the second local minimum —, which has been
illustrated by a black line in Figure 3, as a guideghe eye. We have performed calculations with
different shapes (cubes, spheres, cylinders) ofeggdes, providing an idea of the robustness of our

estimation. The results are shown in Fig. S4.
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Fig. $4 Log-log plot of structure factors S(q) as a fuostof wave vector q for finite HS systems&R10 nmo
= 15%,x = 20%, Ngg= 200) with different geometries as indicatedhia tegend.

4. Variation of the spherical HS system size

We have checked that the mapping procedure carbalspplied to small aggregates by progressively
reducing the size of the spherical subset in theilgition box. For small aggregates, one may wonder
by how much the correlation hole analysis is inficed by the low-q upturn associated with the
aggregate size. We have therefore performed assefisimulations of different NP numbers in the
subset, from Ny = 25 to 950, mimicking changes in aggregate sMieother parameters were kept
constant (R= 10 nm,c = 15%,«x = 20%). The resulting S(gq) are shown in Fig. SBe hlobal

minimum of S(q) is seen to be robust.
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Fig. S5 Influence of size on structure factors Sgfj)inite spherical HS systems {R 10 nm,c = 15%,«k =

20%). Parameters: By, = 25 to 950 NPs as indicated in the legeal.Full scale,(b) zoom to the correlation
hole.

5. Aggregate construction algorithm

Aggregates of different density have been simuldbgdimposing different numbers of direct
neighbors during aggregate construction. The stafioint is the algorithm used in réf(seeAl
below), where N polydisperse spheres obeying the log-normal sigeilelition (R, = 10 nm,c =
15%) are successively placed in contact, startiitly avfirst particle located at the origin, in andam
direction. In the model calculations in this papéy,, has been set to 200. Each new particle is placed
in contact with any of the previously placed ongspsen according to the rules below. Both the
coordination number (i.e., the number of neighlased inexactcontact) and the excluded volume
(i.e., no collisions) are then checked, giving fibllowing possible construction algorithms of diéat

densities:

Al: The particle is placed next to a randomly chosantigge. The coordination number is left free,
only the excluded volume is checked. In case dfsimh, a new position of the particle — including
the random choice of its neighbor — is tried. Tdiiees the open, low-density structures as shown in
Fig. 7.

A2: The particle is placed next to a randomly chosatigle (without any constraint on coordination),
but in case of collision, its position around tpatticle is (randomly) optimized to fit in the atidhal

particle. This increases the local density.

A3: As with A2, but with control of the maximum allowed coordinat number C.) of each

particle. Particles can only be placed next toiglag not reaching th€,. SettingCpaxto two allows
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simulating self-avoiding chains, whereas denserexgges are obtained with high€k.x (varying
from 3 to 7).

A4: As with A2=A3, but with a reinforced local density by enforcpasitioning next to particles with
the highest possible coordination number (the fugdile stayings Cn.y). This is done by establishing
a list of coordination numbers, and choosing rarigdrom the particles witlC = C,,.x— 1 (resp. - 2, -

3 if needed). This construction algorithm leadtheodensest aggregates, shown in Fig. 8a.

In the main article, comparisons with aggregatedaraccording to the different algorithms (A1-A4)
are discussed, with a fixed aggregation numberO6f 1 order to explore also this parameter, non-
spherical aggregates using algorithm A2 have besstencontaining Ny = 50, 100, 200, 400, and 800
particles. As usual, structure factors and localsd®sk,g, have been determined as averages over
hundreds of aggregates. The results are added.i8lfin the main article. The bigger the aggregate
the denser they become, and the less their spescifiace and thus number of particles locatedet th
border. This results in an increase in density witte. The structure factors of these aggregates ar
plotted in Fig. S6.
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Fig. S6 Evolution of S(q) of aggregates of different sidky, = 50 to 800, all A2)Inset: 3D snapshot of
aggregates with 50 and 800 particles (polydispeisihot graphically represented).

6. Use of the unified scattering law proposed by Beaucage

In Fig. S7, we have applied a two-level model waittdl without correlationsto our data in Figure 7a.

The first level is defined by the nanoparticle Rb:= 10 nm,o = 15%) with a radius of gyrationgR
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given by (3/5 <R>*/<R;>%%°= 9.1 nm. The second level corresponds to the ggtgenith a fractal
dimension ¢= 2.5 and a Guinier radius, R 104.6 nm (R, = 81 nm), as obtained from the fit. The
ratio between the prefactors of both Guinier ctitions (dotted lines in Fig. S7) gives the numifer
particles within the aggregatexfy= I./l, = 200. One can see in Fig. S7a that a purelydtéatv does

not describe the correlation hole. In Fig. S7b,dbeelation term with a correlation length of 2@ n
and a local density of 15% (packing fraction = lapproaches the experimental curve somewhat in
the intermediate g-range. Note that alternativaaesoof up to 25% (packing fraction = 2.0) are also

possible.
e 7:‘::“;\7\\\ . |(q) F|g 7a ® |(q) F|g 7a'
. « Beaucage fit
“\e;‘ with correlation
|

(@) (cm™)
s
() (cm™)
s

q A% q A%

Fig. S7 Description of the scattered intensity of Figueef@r simulated aggregates ofgy= 200 polydisperse
NPs (R = 10 nm,c = 15%) by a two-level model witho&) and with(b) correlations (d= 2.5, correlation
length = 20 nm, packing fraction = 1.2) as proposgdBeaucage. Dotted lines represent the Guinier

contribution of each level.
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