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In this Supplementary Material, we provide some dis-
cussion of the active system, details of the schematic
MCT calculation, a brief description of the numeri-
cal method and some results of the equilibrium mode-
coupling theory that are relevant for our discussion.

SI. Description of active systems of self-propelled
particles

We consider an active system of self-propelled particles
in the dense regime. Each particle has a self-propulsion
force f0 and persistence time τp for its motion in a certain
direction, which is marked by an arrow on the particles
in Fig. S1 for clarity. The fact that dynamics of such
a system is different from a passive system can be un-
derstood from the following simple consideration. Let
us consider one collision event between two particles as
shown in the right of Fig. S1. As the particles approach
towards each other, imagine the directors point towards
each other as shown in the figure. As they collide, they
move away from each other due to the short-range repul-
sive potential, but, because their self-propulsion remains
along their directors, they again move towards each other
and collide. This continues over a timescale of the order
of τp, until the directors loose their correlation. Thus,

FIG. S1: Schematic picture of an active system consisting
of self-propelled particles with a self-propulsion force f0 and
persistence time τp for their motion in a certain direction.
One possible effect of persistence is schematically illustrated
in the right on a collision event of two particles (see text for
details).
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even if the particles are purely repulsive, self-propulsion
that is persistent for a timescale of τp, creates an effective
attractive force among the particles. In our description,
we implement activity through the active noise statistics.
Usually two such statistics have been considered in the
literature [1, 2] as we discuss in the main text.

SII. Mode-coupling theory

Mode-coupling theory (MCT) [3–5] was developed in
the early 80’s for studying the complex behaviour when a
fluid is supercooled or its density increases. The viscosity
and relaxation time of the fluid in this regime increases
by 10-12 orders of magnitude for a modest change in
temperature (or density). MCT provides an intuitive and
powerful mechanism to understand this rapid change in
the transport coefficients through a non-linear feedback
mechanism. Ref. [6] presents an instructive explanation
of this feedback mechanism where the structure of the
fluid depends on its viscosity which in turn is determined
via the structure itself. Despite being one of the most
popular theories in the field of glassy dynamics [7], a
clear understanding of the theory, and its key ingredients,
still remains illusive and often spiritedly debated to this
date. There are a number of ways to derive the theory:
the projection operator formalism [4, 5], starting with the
Newton’s equations of motion for individual particles [8],
the hydrodynamic approach [3, 9, 10], the field theoretic
method [5, 11], etc are some of the examples.

MCT assumes that the statics of the system is already
known, and taking the static properties as inputs, the
theory gives the dynamics of the system. The theory
provides an equation of motion of the two-point dynamic
correlation function that we must solve numerically as
an initial value problem since the equation is a nonlin-
ear integro-differential equation and no general analyti-
cal solution is known. It requires the inputs of the static
structure factor (Sk) and the direct correlation function
(ck); these two quantities are related in equilibrium as
Sk = 1/(1−ρ0ck), where ρ0 is the average density. Thus,
once we know either of Sk or ck from experiment, simula-
tion or other theories, MCT provides the time-evolution
of the dynamic structure factor and this can be used to
calculate different transport coefficients like the viscos-
ity or relaxation time. In scenarios where the solution
of the full wave vector dependent theory becomes in-
tractable [12], one often takes a schematic approxima-
tion [13] throwing away all wave vector dependence but
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one (corresponding to the first maxima of Sk) and ob-
tains the schematic MCT. Within this limit, the input to
the theory simply becomes a number λ. The schematic
MCT retains the main mechanism of the theory and is
quite useful for insights.

SIII. Details of the mode-coupling theory
calculation

We have the full wavevector-dependent equations of
motion for the correlation, Ck(t, t′) = 〈δρk(t)δρ−k(t′)〉,
and the response, Rk(t, t′) = 〈∂δρk(t)/∂f̂LT (t′)〉, func-
tions (Eqs (7-9) in the main text):

∂Ck(t, t′)

∂t
= −µk(t)Ck(t, t′) +

∫ t′

0

dsDk(t, s)R(t′, s)

+

∫ t

0

dsΣk(t, s)Ck(s, t′) + 2TRk(t′, t) (S1)

∂Rk(t, t′)

∂t
= −µk(t)Rk(t, t′)

+

∫ t

t′
dsΣk(t, s)Rk(s, t′) + δ(t− t′) (S2)

µk(t) = TRk(0) +

∫ t

0

ds[Dk(t, s)Rk(t, s) + Σk(t, s)Ck(t, s)]

(S3)

with

Dk(t, s) =
κ2

1

2

∫
q

V2
k,qCq(t, s)Ck−q(t, s) + κ2

2Dk(t− s),

(S4)

Σ(t, s) = κ2
1

∫
q

V2
k,qCk−q(t, s)Rq(t, s), (S5)

where κ1 = kBT/DLk
2 and κ2 = 1/DL. The details

of this field-theoretical method can be found in a num-
ber of places, including [5, 14, 15]. Eqs. (S1-S5) form
the mode-coupling theory for a generic nonequilibrium
non-stationary state of an active system. However, the
numerical solution of these equations is not possible due
to excessive time-requirement with the currently avail-
able algorithms, even in the steady-state limit, where we
need to solve the equations iteratively (see Sec. SV).
We therefore take a schematic approximation, writing
the theory at a particular wave vector kmax, which cor-
responds to the first maximum of the static structure
factor, that leads to simplified equations manageable for
numerical solution. Then we obtain the equations for

t�

t� �

(t, t) t�=s

s

FIG. S2: Region of integration for the last term in Eq. (S10).
We need to change the order of integration for the variables
t′ and s to obtain Eq. (S11) [see text].

C(t, t′) ≡ Ck=kmax
(t, t′) and R(t, t′) ≡ Rk=kmax

(t, t′) as

∂C(t, t′)

∂t
= −µ(t)C(t, t′) +

∫ t′

0

dsD(t, s)R(t′, s)

+

∫ t

0

dsΣ(t, s)C(s, t′) + 2TR(t′, t) (S6)

∂R(t, t′)

∂t
= −µ(t)R(t, t′) +

∫ t

t′
dsΣ(t, s)R(s, t′) + δ(t− t′)

(S7)

µ(t) =T +

∫ t

0

ds[D(t, s)R(t, s) + Σ(t, s)C(t, s)] (S8)

with D(t, s) = 2λC2(t, s) + ∆(t − s) and Σ(t, s) =
4λC(t, s)R(t, s). Note that λ contains the information
of interaction through the direct correlation function. It
is well-known that the schematic form of MCT and the
equations for p-spin glass model are analogous [16] and
similar equations, as in Eqs. (S6-S8), were also obtained
in [17] for the p-spin spherical active spin glass model.
Now we define the integrated response function F (t, t′)
as

F (t, t′) = −
∫ t

t′
R(t, s)ds, (S9)

as this is more advantageous for the numerical integra-
tion since R fluctuates more compared to F . To write
the equations in terms of F (t, t′), we take an integration
of Eq. (S7) on t′ and obtain

∂F (t, t′′)

∂t
= −µ(t)F (t, t′′)−1−

∫ t

t′′

∫ t

t′
dsΣ(t, s)R(s, t′)dt′.

(S10)
We show the region of integration for the last term above
in Fig. S2 where we need to do the integration for s first
and then on t′. However, to write the equation in terms
of F (t, t′), we need to carry out the integration on t′ first
(i.e., along the dotted lines), when the integration limits
go from t′′ to s. Then we obtain the equation for F (t, t′)
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from Eq. (S7) as

∂F (t, t′)

∂t
= −1− µ(t)F (t, t′) +

∫ t

t′
dsΣ(t, s)F (s, t′).

(S11)

Using the definitions of D(t, t′) and Σ(t, t′) in Eqs. (S6-
S8) we obtain the equations of motion for the correlation,
C(t, t′), and integrated response, F (t, t′), functions as

∂C(t, t′)

∂t
= −µ(t)C(t, t′) + 2λ

∫ t′

0

dsC2(t, s)
∂F (t′, s)

∂s

+ 4λ

∫ t

0

dsC(t, s)
∂F (t, s)

∂s
C(s, t′)

+

∫ t′

0

∆(t− s)∂F (t′, s)

∂s
ds (S12a)

∂F (t, t′)

∂t
= −1− µ(t)F (t, t′)

+ 4λ

∫ t

t′
dsC(t, s)

∂F (t, s)

∂s
F (s, t′) (S12b)

µ(t) =T +

∫ t

0

ds

[{
2λC2(t, s) + ∆(t− s)

}
∂F (t, s)

∂s

+ 4λC(t, s)
∂F (t, s)

∂s
C(t, s)

]
(S12c)

These equations are valid in general for a non-equilibrium
system even in the aging regime. We assume that the
system goes to a steady state at long time and C(t, t′)
and F (t, t′) become functions of the time difference (t−t′)
alone. It can be shown through the numerical solution
of Eqs. (S12) that if the final parameter values are such
that the system is in liquid state, the system dynamically
evolves to this steady state. To obtain the equations for
this steady state, we take the limits of t and t′ to∞ such
that (t− t′) = τ remains finite. Then, we obtain

∂C(τ)

∂τ
= Π(τ)− µ(∞)C(τ)− ε(τ)

+ 4λ

∫ τ

0

dsC(τ − s)∂F (τ − s)
∂s

C(s) (S13)

∂F (τ)

∂τ
= −1− µ(∞)F (τ)− 4λ

∫ τ

0

dsC(s)
∂F (s)

∂s
F (τ − s)

where the different parameters are defined as

Π(τ) = −
∫ ∞
τ

∆(s)
∂F (s− τ)

∂s
ds (S14a)

ε(τ) = 2λ

∫ ∞
τ

dsC2(s)
∂F (s− τ)

∂s

+ 4λ

∫ ∞
τ

dsC(s)
∂F (s)

∂s
C(s− τ) (S14b)

µ(∞) = T − 6λ

∫ ∞
0

dsC2(s)
∂F (s)

∂s
−
∫ ∞

0

∆(s)
∂F (s)

∂s
ds.

(S14c)
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FIG. S3: Decay of the correlation function C(τ) for different
values of λ within equilibrium MCT obtained from solving Eq.
(S16). C(τ) doesn’t decay to zero for λ ≥ 2.0 and this is the
MCT transition when the system goes to a non-ergodic state.
We note that the non-ergodic state is not found in simulation
or experiments where some other mechanisms, absent within
MCT, takes over and the theory fails to describe the system
beyond this point.

In equilibrium, considering the fluctuation-dissipation
relation (FDR), such that ∂C/∂τ = T∂F/∂τ , we obtain
the equation for the correlation function from Eq. (S13)
as

∂C(τ)

∂τ
+ TC(τ) +

2λ

T
C3(∞)[1− C(τ)]

+
2λ

T

∫ τ

0

C2(τ − s)∂C(s)

∂s
ds = 0. (S15)

This equation becomes the standard MCT equation for
the ergodic state when C(∞) = 0 and the third term
in the above equation vanishes. But in the nonergodic
state, C(∞) is non-zero and Eq. (S15) is different from
the standard MCT equation. A resolution of this paradox
has been offered in [18], where it has been shown that to
obtain the MCT from the field-theoretic treatment in the
non-ergodic state, one must start from a different initial
condition that is commensurate to this state and then
one obtains the standard MCT equation. We concentrate
on the ergodic state in this work where C(∞) = 0 and
obtain the equilibrium MCT equation as

∂C(τ)

∂τ
+TC(τ) +

2λ

T

∫ τ

0

C2(τ − s)∂C(s)

∂s
ds = 0. (S16)

The solution of Eq. (S16) is well known [3, 4]. We set
T to unity and show the decay of C(τ) as a function of
log τ for different values of λ in Fig. S3. As λ increases,
the decay of C(τ) becomes slower and at λ = 2.0, C(τ)
doesn’t decay to zero anymore, this is the MCT transi-
tion point where the system goes to a non-ergodic state.
Such a transition, however, is not found in simulations or
experiments on structural glasses and the theory fails to
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describe the system beyond this point. Within this de-
scription, λ is inversely proportional to T and therefore,
in terms of T , larger λ can be seen as results for small T .

Eqs. (S13) along with the definitions in (S14) give
the mode-coupling theory for an active system of self-
propelled particles in the dense or low temperature
regime. A closer look at Eqs. (S14) shows that evalu-
ation of the variables Π(τ), ε(τ) and µ(∞) requires the
values of C(τ) and F (τ) for all values of τ , from 0 to
∞. Therefore, we must solve the equations through an
iterative method, and the algorithm must be extremely
accurate. We have modified the algorithm that was used
to investigate the aging behavior in [12] for a steady state.
However, this algorithm is not extremely accurate close
to the transition and a small error gets amplified at later
iterations and the solution blows up. To give an exam-
ple, when T = 1.0 and λ = 1.99, we could not iterate
the solution for more than thrice. Therefore, we write
the equations slightly differently using a generalized FDR
through the definition of a time-dependent effective tem-
perature Teff (τ)

∂C(τ)

∂τ
= Teff (τ)

∂F (τ)

∂τ
. (S17)

We have seen that Teff (τ), obtained through Eq. (S17)
from the numerical solution of Eqs. (S13), varies slowly
and has two distinct regime as discussed in the main text.
At small τ , Teff (τ) = T and at large τ it goes to a differ-
ent value, larger than T and the crossover from T to the
larger value occurs at a timescale τ ∼ O(τp). Therefore,
we are justified to assume that Teff (τ) varies slowly and
write the MCT equations for the active steady state as

∂C(τ)

∂τ
= Π(τ)− (T − p)C(τ)−

∫ τ

0

m(τ − s)∂C(s)

∂s
ds

(S18)

∂F (τ)

∂τ
= −1− (T − p)F (τ)−

∫ τ

0

m(τ − s)∂F (s)

∂s
ds

(S19)

where we have

m(τ − s) = 2λ
C2(τ − s)
Teff (τ − s)

(S20a)

p =

∫ ∞
0

∆(s)
∂F (s)

∂s
ds (S20b)

Π(τ) = −
∫ ∞
τ

∆(s)
∂F (s− τ)

∂s
ds. (S20c)

Note that the definition of Teff (τ) through Eq. (S17)
doesn’t imply any loss of generality as we evaluate
Teff (τ) at each time step. The advantage of the above
form is that the standard algorithm, that can be used
with large accuracy, for equilibrium MCT can be eas-
ily extended and used through an iteration method, as
discussed in Sec. SV, therefore we chose to present the
theory in the form of Eqs. (S18-S20). We have checked

�(⌧) = 0Start with

F (⌧), C(⌧)Obtain

Obtain p, ⇧(⌧) Store as pold, ⇧old(⌧)

F (⌧), C(⌧)F (⌧), C(⌧)Evaluate           and      

Condition: if
p = pold and ⇧(⌧) = ⇧old(⌧)

Exit

Use �(⌧)

FIG. S4: Illustration of the iterative procedure for the solu-
tion of the mode-coupling theory for the steady-state of an
active system.

that in the regime of parameter space, where the earlier
numerical method works, the solutions of Eqs. (S13-S14)
and Eqs. (S18-S20) are the same. The initial conditions
for the correlation and response functions are C(0) = 1.0
and F (0) = 0.0.

SIV. Details of the STAP model

As we discussed in the main text, the scenario of a
single trapped active particle (STAP) in a harmonic po-
tential is valid at short to intermediate time scales, par-
ticularly around the α-relaxation regime of MCT. We
consider the Langevin equation for the dynamics of a
single particle as [19]

mẍ(t) = −U ′(x)− γẋ(t) + η(t) + f(t) (S21)

where m is the mass of the particle, γ, the effective fric-
tion force, η(t), the thermal noise with zero mean and
〈η(t)η(t′)〉 = 2kBTγδ(t − t′) and f(t), the active noise
with zero mean. We have considered two different statis-
tics for the active noise:

SNTC statistics: 〈f(t)f(0)〉 = ∆0 exp[−t/τp] (S22)

OUP statistics: 〈f(t)f(0)〉 =
T speff
τp

exp[−t/τp], (S23)

where both ∆0 and T speff are proportional to the square

of the active force amplitude: f2
0 . We ignore the acceler-

ation term as we are looking at the glassy regime, where
this term is not important. We consider the harmonic
potential U(x) = kx2/2. Then we obtain

k〈x(t)2〉 = kBT +
HΘ

1 +Gτp
, (S24)
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FIG. S5: Symbols are the equilibrium MCT data of τα when
the correlation function C(τ) becomes 0.4 (see Fig. S3). The
dashed line is a fit to the equation log τ = a − γ log(λ − λc)
with a = 0.69 and γ = 1.74.

where H = 1/2γ, G = k/γ, Θ = ∆0τp for SNTC statis-
tics and Θ = T speff for OUP model. Eq. (S24) gives

the mean potential energy of the particle. In Ref. [19], it
was shown that this energy is related to the spatial extent
over which there is a non-zero probability of finding the
particle. Therefore, this energy should be related to the
probability of a particle to move to the edge of the cage
and escape from it. In other words, this energy should
be related to the FDR ratio that MCT provides in the
α-relaxation regime, where the particle comes out of the
cage formed by neighboring particles and we relate this
to the effective temperature Teff (τ → ∞) ≡ Teff de-
fined in the main text. For the two models we therefore
have:

Teff =

{
T +

H∆0τp
1+Gτp

, for SNTC statistics

T +
HT sp

eff

1+Gτp
, for OUP statistics.

(S25)

From the numerical solution of active MCT [Eqs. (S18-
S20)], we see Teff (τ) = T at very short timescale and
saturates to a larger value at long time (see main text).
Teff (τ → ∞) agrees well with Eq. (S25) as we show in
the main text.

SV. Numerical Solution

The numerical solution of Eqs. (S18-S19) along with
the definitions in Eqs. (S20) can be obtained through
a generalization of the standard algorithm to solve the
MCT equations in equilibrium [20–22]. The advantage
of this algorithm is that it can be used with any desired
accuracy simply through the reduced initial step size and
increasing the number of steps after which the time-step
is doubled [21]. We start with the passive system at a
certain T and λ with ∆(τ) = 0 and obtain C(τ) and F (τ).
Teff (τ) for ∆(τ) = 0 is equal to T . We then use these
values of F (τ) to obtain p and Π(τ) using the relations in
Eqs. (S20). We again evaluate C(τ) and F (τ) with these
new values of parameters and obtain these parameters
again with the new values of F (τ). We continue this
process until the older and new values of p and Π(τ) are
same. We illustrate this through a flowchart in Fig. S4.
When activity is not very large (for example ∆0 = 0.1
and τp = 0.1), it takes around 30 iterations to achieve the
desired accuracy, however, for larger activity parameters,
it takes of the order of 100 iterations for the solution to
converge.

SVI. Exponent for the power-law divergence of
α-relaxation time within schematic MCT

In a glassy system, we are interested in the long time
dynamics and therefore we look at the α-relaxation time
τα that is defined as the time when C(τ) becomes 0.4. We
obtain the mode-coupling exponent γ for the α-relaxation
time with τα ∼ (σ − σc)−γ , where σ is any control pa-
rameter (T or density) and σc is its critical value where
we obtain the MCT transition for the passive system.

We extract τα from the numerical solution of Eq.
(S16), and fit the data with a form log τ = a−γ log(λ−λc)
and obtain a = 0.69 and γ = 1.74. In simulations or
experiments, this value of γ may vary slightly, as is well-
known for the equilibrium MCT, however, what is im-
portant is that the same exponent for the passive system
governs the effect of activity on the dynamics of the ac-
tive system when the parameters are such that the pas-
sive system is close to the MCT transition point.
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