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1 Restless Night: a Chinese poem about droplet
formation and detachment

Supplemental Materials 

 

  

Restless night [1] 

 

 

As bamboo chill drifts into the bed room, moon light fills every corner of our garden.  

 

Heavy dew beads and trickles, stars suddenly there, sparse, next aren’t.  

 

Fireflies in dark flight flash, waking water birds begin calling, one to another.  

 

All things caught between shield and sword, All grief empty, the clear night passes.  

 

 

[1] Tu F, Hinton D (1989) The selected poems of Tu Fu. (New Directions Publishing). 

 

 

 

  

[1] Tu F, Hinton D (1989) The selected poems of Tu Fu. (New Directions
Publishing).

2



2 Supplemental figures

Backlight and diffuser Frame, fibers and droplet Micro-lens and camera
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 Micro-pipette tip
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135mm micro-lens

Experimental setup side view

Frame front view

(a)

(b)

Thin vertical fiber 
(80 µL diameter)

Bent fiber 
(250 µL diameter)

Fig. S1: Side and front view of a 3D printed frame used in the experiments.
A 250 µm thick fibre attached on the frame is stretched and bent by an 80 µm
vertical fibre. An SDS solution droplet is attached on the bent fibre by means
of a micro-pipette tip. A camera photographs the droplet using a backlight.

Ω =  1 µL 2 µL 3 µL 4 µL 5 µL

Fig. S2: SDS-water solution droplets of different volumes attached to a fibre
(θ = 54.59◦). The vertical thin fibre affected the profile of the droplet by wicking
liquid upward via capillary force. However, when a droplet is large (Ω > 3 µL)
the contribution due to wicking is negligible.
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Fig. S3: Front and side views of SDS-water solution droplets of increasing
volumes (Ω) attached to fibres with three different half-angles (Ω).
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Fig. S4: The critical droplet volumes (Ω) of an SDS-water solution for a given θ,
as examples of specific data points in Figs. 2, 4 & 5.
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Fig. S5: Photographs of SDS-water solution droplets at critical state on fi-
bre bent to various angels (θ = 11.4◦, 21.5◦, 39.7◦, 49.5◦, 54.5◦ and Ω =
20, 25, 15, 12.5, 11 µL from top to bottom).
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3 Supplemental video captions

SI video 1.avi: High speed video of an SDS-water solution droplet (14 µL)
detaching from a bent fibre (θ = 3.9◦). The thin film above the droplet breaks;
then the droplet falls from the fibre. The video is recorded at 1000 fps and
played back at 1/50 of real time.

SI video 2.mp4: High speed video of an SDS-water solution droplet (9 µL)
detaching from a bent fibre (θ = 53.9◦). The droplet slowly slides down along
the left side of the fibre. The first 4:00 minutes of the video show the droplet
very slowly moving to the left. At 4:20 the droplet begins to detach from the
right-hand fibre and quickly moves downward along the left side of the fibre.
The video is recorded at 1000 fps and played back at 1/20 of real time.
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4 Derivation of model I (free energy approach)

We can develop mathematical models for the aforementioned observations, and
start by considering the case of a droplet that wets and is attached to a hori-
zontal fibre (Fig. S6). The total free energy (G) attributed to the droplet on a
horizontal fibre at equilibrium is

G = HvΩ + γALA + γSAASA + γLSALS − ρgΩz, (S1)

where Hv is the volumetric free energy of the fluid, g is the gravitational con-
stant, γ is the liquid surface tension, ρ is the density of the fluid, γSA and γLS
are the interfacial energies at the solid-air interface and the liquid-solid interface,
respectively. ASA and ALS are the areas of the solid-air interface and liquid-
solid interface, respectively. Ω is the volume of the fluid, and z is the center of
mass of the droplet. By assuming that Young’s equation (γ cosα+ γLS = γSA,
where α is the wetting angle) valid in this situation, eqn (S1) can be rewritten
without the γLS term:

G = HvΩ + γALA + γSAASA + (γSA − γ cosα)ALS − ρgΩz. (S2)

When the position of droplet (z) is perturbed (from z to z+ δz) by a vanishing
distance δz (herein, we use “δ” as variational notation; refer to Fig. S6 for the
geometric details), there is a change in G (denoted as δG hereafter) which can
be used to determine the stability criterion of the droplet-fibre system. Noting
that a positive perturbation δz leads to a negative value of δALS (meaning
that the fibre is dewetted when the droplet moves downward), and invoking
δASA = −δALS , variation of eqn (S2) leads to

δG = HvδΩ + γδALA − γ cosαδALS − ρgΩδz. (S3)

Noting that the droplet maintains a constant volume (δΩ = 0) after perturba-
tion, eqn (S3) becomes

δG = γδALA − γ cosαδALS − ρgΩδz, (S4)

where the first term on the right hand side is the surface energy contribution
from the change in the liquid-air interface area. The second term represents the
contribution from the change in the liquid-solid interface area, and the third
term is the gravitational energy change under perturbation.

The solid-liquid interface area is ALS ≈ 4πbR cosβ (side surface area of a
section of cylindrical fibre (AB, length 2R cosβ), as shown in Fig. S6), where R
is the radius of the droplet when assuming the droplet is spherical, and β is the
angle between horizontal and the 3-phase point where the fibre exits the droplet
(∠BOH, in Fig. S6). Assuming that the shape of the droplet does not change
after an infinitesimal perturbation of δz (δALA = 0), the free energy change due
to the perturbation can be derived from eqn (S4):

δG ≈ γ4πb sinβδβR cosα− ρgΩδz. (S5)

Noting that R cosαδβ/δz ∼ O(1) 1, we have the energy potential:

δG

δz
≈ γ4πb sinβ − ρgΩ. (S6)

1See eqn (S10) and corresponding analysis for more details.
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Fig. S6: Geometry of a droplet on a fibre of diameter 2b. The spherical
droplet is originally positioned on a horizontal fibre (θ = π/2) at equilibrium
(represented by the dashed line with centre O). The position of the droplet
moves down to δz when perturbed from equilibrium (represented by the filled
circle with centre O′). β is the angle between horizontal and the 3-phase point
where the fibre exits the droplet (∠BOH). The solid-liquid contact angle is not
drawn.

A critical condition approaches as δG/δz → 0 and leads to a critical volume of
the droplet:

Ω ≈ 4πγb sinβ

ρg
. (S7)

Defining the capillary length of a fluid as λ =
√
γ/ρg, eqn (S7) is identical to

the equation (sinβ = 1
3
R3

bλ2 ) found by Lorenceau et al. (2004), which we also
validated experimentally. It is worth mentioning that, taking advantage of this
energy based analysis, we are able to avoid the “assumed equivalent” configu-
ration (two inclined fibres joining a droplet) used by Lorenceau et al. (2004).
Instead, we can directly analyze the stability of droplet held by a horizontal
fibre. Nevertheless, the two modeling techniques (the energy based method em-
ployed in this paper and force balances used in Lorenceau et al. (2004)) confirm
each other well.

A positive value of δG/δz means that a droplet resists perturbation and tends
to stay on the fibre with certain robustness (e.g., Ω is sufficiently small). At the
critical condition (δG/δz = 0), the volume of the droplet is large enough that
the contribution from the gravitational potential (negative) tends to dominate
over the contribution from interfacial energy (positive) given an infinitesimal
perturbation. The destabilized droplet-fibre system then tends to fall off the
fibre. On the other hand, when δG/δz < 0 (e.g., Ω is sufficiently large), a
droplet falls off immediately due to the negative free energy potential.

Eqn (S7) implies that the maximum possible volume of a liquid held by a
horizontal fibre will occur when sinβ approaches unity. The maximum droplet
size can now be estimated by normalizing eqn (S7) by a characteristic volume
of a spherical droplet whose radius is the capillary length (Ω̃ = 4

3πλ
3) yielding:

Ω∗I =
Ω

Ω̃
. 3

b

λ
, (S8)

which we label as model I. Physical insights based on this model can be found
in ESI §7.
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Next, we provide a brief auxiliary analysis for model I, where a modified
model I is proposed that includes a wetting contact angle (α), and more details
about derivation of model I (i.e., eqn (S5)–eqn (S7)) can be found in this section
too.

Under a downward perturbation δz, the relative position of the droplet and
the horizontal fibre changes and the equivalent geometry is shown in Fig. S7.
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Fig. S7: Physical sketch for model I (left), and the equivalent geometry (right).
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2 mm
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β ≈ 58° 

β ≈ 55° β ≈ 48° β ≈ 51° 

β ≈ 58° 

Fig. S8: Measured β at critical conditions for glycerol-water solution (top row),
SDS-water solution (middle row), and pure water (bottom row) on horizontal
fibres with different diameters and volumes as marked.

Noting that Rδβ is the arc length (Fig. S7), it is not hard to find: Rδβ/δz ≈
secβ. Invoking eqn (S5), a more complete from of the eqn (S6) can be derived:

δG

δz
= γ4πbcosα tanβ − ρgΩ. (S9)
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Thus, in the critical condition, δG/δz → 0 leads to

Ω =
γ4πb sinβ

ρg

cosα

cosβ
, (S10)

which is a modified form of eqn (1) in the paper, and includes effect of the
contact angle α. When α ≥ 90◦, cosα ≤ 0, and thus, Ω ≤ 0. Physically, this
implies that a “hydrophobic” fibre can not hold any liquid.

In our experiments, we noticed that cosα/ cosβ ∼ O(1) 2, which is equiv-
alent to Rδβ cosα/δz ∼ O(1) as proposed in the modeling section (ESI §4).
Experimental evidence can be found in Fig. S8, and external experimental sup-
port can be found in Lorenceau et al. (2004). Thus, one arrives at eqn (6) of
the paper:

Ω ≈ 4γπb sinβ

ρg
.

This is identical to the model developed by Lorenceau et al. (2004) using a force
balance derivation.

2For example, at critical condition, β ranges from ∼48◦ to ∼58◦, and cosβ ranges from
∼0.53 to ∼0.67. Contact angle α ranges from ∼30◦ to ∼ 59◦, and cosβ ranges from ∼0.5 to
∼0.86.
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5 Derivation of model II (free energy approach)

We continue our analysis with the same free energy based technique applied in
ESI §4 to the fibre bent at small angles (e.g., θ . 18◦). At small angles, a droplet
of critical size is characterized by a triangular thin film connected to the apex of
the fibre (Fig. 1(c) in the paper). The area of the liquid-air interface is ALA ≈
2zL sin θ, and the area of the liquid-solid interface is ALS ≈ 4πbL (Fig. S9).
Noting z ≈ L and sin θ ≈ θ when θ is small, analysis of eqn (S4) indicates that
given an infinitesimal perturbation on the position of the droplet (δz) the free
energy change of the droplet is

δG ≈ γ(4zθ − 4πb cosα)δz − ρgΩδz. (S11)

Our experiments show that in this regime, generally, the width of the bottom
of the droplet (2ztanθ ≈ 2zθ) is significantly larger than the diameter of the
fibre (2b) (Fig. 1(c) in the paper). In other words, the contribution to δG from
the fibre thickness is negligible compared to that of the liquid film between the
fibre.
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Fig. S9: Geometry of a droplet between a bent fibre (diameter 2b) with small
θ. The bottom of the droplet (solid line, A′B′) moved δz downward after a
perturbation from the original position (dashed line, AB). The solid-liquid
contact angle is not drawn.

The critical state is approached as δG/δz → 0 and leads to a critical volume
of the droplet at small angles:

Ω ≈ 4γLθ/ρg. (S12)

Again, when δG/δz < 0, the droplet total energy is reduced by perturbation
and the droplet subsequently falls. Normalizing eqn (S12) with characteristic
volume (Ω̃), we have created model II that describes the critical volume for
small angles:

Ω∗II =
Ω

Ω̃
≈ 3L

πλ
θ =

3

π
L0θ, (S13)

where L0 = L/λ is a length scale that characterizes the wetted length compared
to the capillary length. Physical insights based on this model can be found in
ESI §7. An alternative derivation of model II based on a force balance (similar
to the method used in Lorenceau et al. (2004)) can be found in ESI §6.
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6 Alternative derivation of model II (force bal-
ance approach)

In this section, we provide an alternative derivation of model II based on force
balances analysis. As shown in Fig. S10, the weight of the droplet (Ωρg) is
balanced by vertical projection of the capillary forces (2κγL) on the fibre, thus,
we have

Ωρg = 4κγL sin θ,

where, κ =
∫ L
0

cosϕ(ξ)dξ/L is a variable that measures the space averaged
effects of the local contact angle (ϕ(ξ)) formed at the interface of the thick
film of the droplet and the fibre (see the local cross-section A-A of Fig. S10).
Noting that the when θ is small, the local contact angle ϕ(ξ) is small (e.g., see
the droplet morphology shown in Fig. 1(c), or the first row in Fig. S3), it is
reasonable to assume ϕ(ξ) ≈ 0 for a considerably large portion along the fibre
length (ξ), and thus, κ ≈ 1. Invoking θ ≈ sin θ when θ → 0, we arrive at
Ωρg ≈ 4γLθ, or

Ω ≈ 4γLθ

ρg
,

which is identical to eqn (3) in the paper (model II).
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2κγL
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L

2κγL

θ

x

Fig. S10: Free body diagram of the force balance on a droplet. L is the wetted
length of one side of the fibre bent at an angle θ at the origin O. The capillary
force is represented by ΩgL and ξ represents the axis of the fibre. A-A is a line
indicating where the cross-section cutaway perpendicular to the fibre was made.
The view of this local cutaway is shown as Section A-A. ϕ is the local contact
angle of the droplet on the fibre.
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7 Physical interpretation of models I & II

It is worth noting that the free energy based derivation of model I and II itself
allows access to more physical insights explicitly. These physical interpretations
are not directly offered by force balance analysis, despite that force balances
are seemingly more straightforward (see ESI §6 and the modeling technique in
Lorenceau et al. (2004)).

Starting with one governing equation eqn (S4), we arrived at two models
(model I, associated with eqn (S7) and model II, associated with eqn (S12),
respectively) by introducing two different assumptions. For example, eqn (S7)
is derived by assuming that the droplet shape remains the same under per-
turbation; thus, the area of the liquid-air interface (ALA) remains constant
(δALA ≈ 0, meaning that the first term on the right hand side of eqn (S4) is
neglected, denoted as assumption I ). To arrive at eqn (S12), we assumed that
δALS ≈ 0 (assumption II ), meaning that the contribution from the change in
solid-liquid interfacial area (δALS) is negligible compared to the contribution
from the liquid-air interface (δALA) when the droplet is perturbed. In other
words, the second term of the right hand side of eqn (S4) vanishes. This mathe-
matical symmetry provides explicit physical meaning for the models of regimes
I and II. There is “competition” between the contributions of liquid-air interface
and liquid-solid interface: when θ → 0, the liquid-air interface ALA is the dom-
inant factor of the stability of the droplet-fibre system. On the other hand, the
physics of a droplet attached on a horizontal fibre (θ = π/2) is dominated by the
liquid-solid interface ALS . In regime III, between these extremes, we propose
that upon perturbation, neither the droplets shape (δALA) nor the wetted area
(δALS) remain constant.
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8 Stability analysis on a slightly bent fibre (tran-
sition from region I to region III)

In this section we investigate the stability of a droplet on a slightly bent fibre
(θ . π/2) to examine the transition from region I (θ = π/2) to region III
(θ < π/2).

Starting with eqn (S4), neglecting the contribution from the changes in
droplet shape (δALA), we have

δG

δz
= −γ cosα

δALS
δz

− ρgΩ. (S14)

Note that δALS = −4πbδL, where δL is the de-wetted length of the fibre
(Fig. S11), the critical volume of a droplet can be reached by letting δG/δz → 0:

Ω =
4πγb cosα

ρg

δL

δz
.

Based on the law of sines (see Fig. S11 for the trigonometry), we have
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Fig. S11: Physical sketch for a droplet held by a slightly bent fibre under
perturbation (a), the equivalent geometry (b), and the geometry of the corre-
sponding analysis (c).

δz

sin(θ − β)
=

δL

sinβ
. (S15)

Note that for a slightly bent fibre (θ . π/2), cos θ ≈ 0 and sin θ ≈ 1. The above
law of sines can be rewritten as

δL

δz
≈ sinβ

cosβ sin θ
. (S16)

Combining above, the critical volume is

Ω ≈ 4πγb

ρg

cosα

cosβ

sinβ

sin θ
. (S17)

This equation has the same form as eqn (7) in the paper, meaning that

Volume = fn(θ) =
Capilary Force

Specific Weight

1

sin θ
.
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In the limit of θ → π/2, recalling that cosα/cosβ ∼ O(1) 3 and sin θ → 1,
this equation becomes eqn (1) of the paper. Thus, there is not necessarily a
discontinuity at the boundary of Region I and Region III. Experimental evidence
found in Fig. 1 or Fig. 5 in the paper suggests a reasonably smooth transition.

3See Fig S7 and corresponding analysis in ESI §4 for more details and external experimental
supports can be found in Lorenceau et al. (2004).

16



9 An alternative model for regime III

For angles 18◦ . θ . 90◦, we consider the force balance between the gravi-
tational component and the surface tension provided by one side of the fibre
(Fig. S12) under perturbation. The experimental observations reveal that at
these angles a droplet slides down along one side of the fibre during detachment
(Fig. 3 in the paper or SI video 2). Thus we can formulate the balance as

ρgΩ sin θ = 2κγL, (S18)

where κ =
∫ L
0

cosϕ(ξ)dξ/L is a variable that measures the space-averaged effects
of the local contact angle (ϕ(ξ)) formed at the interface of the thick film of the
droplet and the fibre as illustrated in the cross-section A-A of Fig. S12).
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Ωρgsinθ 
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Section A-A
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2κγL
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L

Fig. S12: Free body diagram of the force balance on a droplet. L is the wetted
length of one side of the fibre bent at a half angle θ at the origin O. The
capillary force is represented by γL and ξ represents the axis of the fibre. A-A
is a line indicating where the cross-section cutaway perpendicular to the fibre
was made. The view of this cutaway is shown as Section A-A . ϕ is the local
“contact” angle of the droplet.

The droplet profile varies along the fibre as seen in Fig. 3 (ξ-axis of Fig. S12),
Accordingly, ϕ also varies along the fibre, and may even be a complicated func-
tion of θ. Thus, κ is difficult to calculate or measure, especially at critical
states. However, κ is not a practical or “useful” parameter even if it was a
known parameter. Rather, there is no disadvantage to assuming that κ is a
constant which may lead to an acceptable and practical fitting parameter that
is significantly less complex.

Recalling the the definition of capillary length, and substituting the empirical
model of the wetting length eqn (5) into eqn (S18) leads to

Ω ≈ κ 2λ3

sin2 θ
. (S19)

By choosing a simple κ value κ ≈ 0.5 we see decent agreement with the exper-
iment especially when θ is relatively large. Normalizing the droplet volume by
the characteristic volume (Ω̃) leads to an alternative semi-analytical model for
regime III (model III′):

Ω∗III′ =
Ω

Ω̃
≈ 3κ

2π sin2 θ
. (S20)
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One heuristic way to think about the physical nature of regime III is to
consider a spherical droplet with a horizontal fibre running through it. If the
fibre is then bent inside the droplet with some small angle (θ < π/2 in this case),
then the wetted length of the fibre will become 2L/ sin θ > 2L and there will
be a larger force attaching the droplet to the longer fibre, so the mass and the
volume of the droplet can increase by ∼ 1/ sin θ. Recalling that L ∼ λ/ sin θ,
we expect Ω∗ ∼ 1/ sin2 θ.

Comparing eqn (4) in the paper and with eqn (S20) to eliminate Ω∗ and
noticing that sin θ ≈ θ for relatively small angles, the angle for maximum droplet
volume becomes

θopt ≈ sin−1
(

κ

2L0

)1/3

≈ 21◦. (S21)

A comparison of model III (eqn 6 in the paper), and model III′ (eqn (S20)) can
be found in Fig. S13. Both the models give reasonable accurate prediction of
the optimal angle.
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Fig. S13: Comparison of model III and model III′ against experimental data
on “θ-Ω∗” plane.
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