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Figure S1. FTIR spectrum of amphiphilic macromolecule.

Fourier Transform infrared spectroscopy (FTIR) spectra were obtained with a Bruker 

Tensor-27 spectrometer at 25.0±0.5°C. A doublet adsorption peaks at around 3385 

and 3196 cm-1 appeared in Fig.S1, corresponding to primary amine residues; but they 

were in a shift to low wave number, probably because of the coupling between 

primary amine and tertiary amine residues[1]. A peak at around 2196 and 2872 cm-1 

was observed and attributed to CH3- and -CH2- stretching vibration, respectively. The 

intensity of the adsorption peak at ~1664 cm-1 was the characteristic peak of the C=O 

stretching vibration. The adsorption peak of -C-O-C- group was observed at ~1117 

cm-1.
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Figure S2. Solid-state 13C NMR of amphiphilic macromolecule.

Solid-state 13C NMR measurements were carried out at 25.0±0.1 °C on a Bruker 

Avance III spectrometer (400 MHz). From Fig.S2, the carbon chemical shift at ~180 

ppm was attributed to C=O group; a narrow shift at ~71 ppm was assigned to the C-C 

group close to ether bond; the shift at around 42 ppm was attributed to alkyl group.



LLS spectrometer (ALV/DLS/SLS-5022F) with a multi-τ digital time correlator 

(ALV-5000) and a cylindrical 22 mW He-Ne laser (λ = 632.8 nm) as the incident 

beam was used. In static LLS continuously measuring in the range of 30~80°, we can 

obtain the weight-average molar mass (Mw), and the z-average root-mean-square 

radius of gyration ( 1/2 or written as ) of scattering objects in a dilute 2
gR  gR 

solution or dispersion from the angular dependence of the excess scattering intensity, 

known as Rayleigh ratio Rvv(q) and shown as eq 1:[2,3]
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where K = 4πn2(dn/dC)2/(NA λ0
4) and q = (4πn/λ0) sin(θ/2) with NA, dn/dC 

(approximately being 0.1 ml/g), n, and λ0 being the Avogadro number, the specific 

refractive index increment, the solvent refractive index, and the wavelength of the 

light in a vacuum, respectively.
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Figure S3. Scattering vector (q) dependence of Raleigh ratio Rvv(q) of amphiphilic 

macromolecule chains in water, where the macromolecule concentration is 5.0 × 10-6 

g/mL and the relative error is no more than 5% for each data point.

In SLS study of our amphiphilic macromolecule, the solution was so dilute that the 

extrapolation of C → 0 is not necessary, and the second term  in eq 1 can be 22A C

dropped.[2,3] The results show that Mw and  of the amphiphilic macromolecule are gR 

1.01 × 106 g/mol and 113 nm, respectively.



X-ray photoelectron spectroscopy (XPS) was performed on Thermo Scientific 

ESCALab 250Xi using 200 W monochromated Al Kα radiation. The 500 μm X-ray 

spot was used for XPS analysis. The base pressure in the analysis chamber was about 

3×10-10 mbar. Typically, the hydrocarbon C 1s line at 284.8 eV from adventitious 

carbon is used for energy referencing.
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Figure S4. XPS Na 1s, N 1s, C 1s, and O 1s spectra of amphiphilic macromolecule.

From X-ray photoelectron spectroscopy (XPS) results (Figure 2), the peaks of Na 1s 

and N 1s at around 1071.3 eV and 399.4 eV can be observed, respectively. 4 peaks are 

fitted up to the data set from Figure 2c, in which C 1s peaks at around 284.8 eV, 286.3 

eV, 287.8 eV, and 288.8 eV are observed, assigned to C−C, C−O, C=O, and COO, 

respectively. O 1s peaks at around 531.7 eV, 532.5 eV, and 533.4 eV can be observed, 

which are assigned to C=ONH2, C=O, and C−O. XPS results afford the ability to 

quantify the fraction of each block[4,5], such as the fraction of ionizable group being 

approximately 23.1 %.
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Figure S5. Distribution of volume average droplet diameter of the emulsion 

containing a fixed amount of macromolecule (1000 mg/L) in the aqueous phase.
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Figure S6. SEM images of amphiphilic macromolecule systems at pH 2 (a), pH 6 (b), 

and pH 10 (c).

The macromolecule aqueous solutions at different pH values were prepared with the 

vacuum sublimation freezing drying technique[6], and the aggregation behaviors of the 

macromolecules were investigated by using a Hitachi S-4800 scanning electron 

microscope.



Table S1. Zeta potential of emulsions at different pH values and salinities.

emulsions at different pH

pH 2 pH 4 pH 6 pH 8 pH 10

zeta 

potential 

(mV)

2.6±0.72 -4.1±0.23 -12.9±0.4 -15±4.8 -11.7±2.2

emulsions at different salinities (mg/L)

0 25 37.5 50 75 100

zeta 

potential 

(mV)

-28.4±2.8 -21.7±1.0 -19.5±3.2 -16.1±0.8 -14.1±3.1 4.9±0.18



Table S2. Interfacial tension of different systems.

emulsions at different pH

pH 2 pH 4 pH 6 pH 8 pH 10

interfacial 

tension (mN/m)
8.54±0.11 7.67±0.25 5.24±0.12 4.34±0.28 3.91±0.16

emulsions at pH 5 and different salinities (mg/L)

0 25 37.5 50

interfacial 

tension (mN/m)
6.84±0.11 8.73±0.36 12.33±0.42 12.91±0.13
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