

Supporting information

Figure S1. FTIR spectrum of amphiphilic macromolecule.

Fourier Transform infrared spectroscopy (FTIR) spectra were obtained with a Bruker Tensor-27 spectrometer at 25.0 \pm 0.5°C. A doublet adsorption peaks at around 3385 and 3196 cm⁻¹ appeared in Fig.S1, corresponding to primary amine residues; but they were in a shift to low wave number, probably because of the coupling between primary amine and tertiary amine residues^[1]. A peak at around 2196 and 2872 cm⁻¹ was observed and attributed to CH₃- and -CH₂- stretching vibration, respectively. The intensity of the adsorption peak at ~1664 cm⁻¹ was the characteristic peak of the C=O stretching vibration. The adsorption peak of -C-O-C- group was observed at ~1117 cm⁻¹.

Figure S2. Solid-state ¹³C NMR of amphiphilic macromolecule.

Solid-state ¹³C NMR measurements were carried out at 25.0 ± 0.1 °C on a Bruker Avance III spectrometer (400 MHz). From Fig.S2, the carbon chemical shift at ~180 ppm was attributed to C=O group; a narrow shift at ~71 ppm was assigned to the C-C group close to ether bond; the shift at around 42 ppm was attributed to alkyl group. LLS spectrometer (ALV/DLS/SLS-5022F) with a multi- τ digital time correlator (ALV-5000) and a cylindrical 22 mW He-Ne laser ($\lambda = 632.8$ nm) as the incident beam was used. In static LLS continuously measuring in the range of 30~80°, we can obtain the weight-average molar mass (M_w), and the z-average root-mean-square radius of gyration ($\langle R_g^2 \rangle \rangle^{1/2}$ or written as $\langle R_g \rangle$) of scattering objects in a dilute solution or dispersion from the angular dependence of the excess scattering intensity, known as Rayleigh ratio $R_{vv}(q)$ and shown as eq 1:^[2,3]

$$\frac{KC}{R_{\rm vv}(q)} \approx \frac{1}{M_{\rm w}} \left(1 + \frac{1}{3} \langle R_{\rm g}^2 \rangle q^2\right) + 2A_2C \tag{1}$$

where $K = 4\pi n^2 (dn/dC)^2/(N_A \lambda_0^4)$ and $q = (4\pi n/\lambda_0) \sin(\theta/2)$ with N_A , dn/dC (approximately being 0.1 ml/g), n, and λ_0 being the Avogadro number, the specific refractive index increment, the solvent refractive index, and the wavelength of the light in a vacuum, respectively.

Figure S3. Scattering vector (q) dependence of Raleigh ratio $R_{vv}(q)$ of amphiphilic macromolecule chains in water, where the macromolecule concentration is 5.0×10^{-6}

g/mL and the relative error is no more than 5% for each data point. In SLS study of our amphiphilic macromolecule, the solution was so dilute that the extrapolation of $C \rightarrow 0$ is not necessary, and the second term $2A_2C$ in eq 1 can be dropped.^[2,3] The results show that M_w and $\langle R_g \rangle$ of the amphiphilic macromolecule are 1.01×10^6 g/mol and 113 nm, respectively. X-ray photoelectron spectroscopy (XPS) was performed on Thermo Scientific ESCALab 250Xi using 200 W monochromated Al K α radiation. The 500 μ m X-ray spot was used for XPS analysis. The base pressure in the analysis chamber was about 3×10^{-10} mbar. Typically, the hydrocarbon C 1s line at 284.8 eV from adventitious carbon is used for energy referencing.

Figure S4. XPS Na 1s, N 1s, C 1s, and O 1s spectra of amphiphilic macromolecule. From X-ray photoelectron spectroscopy (XPS) results (Figure 2), the peaks of Na 1s and N 1s at around 1071.3 eV and 399.4 eV can be observed, respectively. 4 peaks are fitted up to the data set from Figure 2c, in which C 1s peaks at around 284.8 eV, 286.3 eV, 287.8 eV, and 288.8 eV are observed, assigned to C–C, C–O, C=O, and COO, respectively. O 1s peaks at around 531.7 eV, 532.5 eV, and 533.4 eV can be observed, which are assigned to C=ONH₂, C=O, and C–O. XPS results afford the ability to quantify the fraction of each block^[4,5], such as the fraction of ionizable group being approximately 23.1 %.

Figure S5. Distribution of volume average droplet diameter of the emulsion containing a fixed amount of macromolecule (1000 mg/L) in the aqueous phase.

(c) pH 10

and pH 10 (c).

The macromolecule aqueous solutions at different pH values were prepared with the vacuum sublimation freezing drying technique^[6], and the aggregation behaviors of the macromolecules were investigated by using a Hitachi S-4800 scanning electron microscope.

	emulsions at different pH								
	pH 2	pH 4	pH 6	pH 8	pH 10				
zeta									
potential	2.6±0.72	-4.1±0.23	-12.9±0.4	-15±4.8	-11.7±2.2				
(mV)									
emulsions at different salinities (mg/L)									
	0	25	37.5	50	75	100			
zeta									
potential	-28.4±2.8	-21.7±1.0	-19.5±3.2	-16.1±0.8	-14.1±3.1	4.9±0.18			
(mV)									

Table S1. Zeta potential of emulsions at different pH values and salinities.

	emulsions at different pH							
	pH 2	pH 4	pH 6	pH 8	pH 10			
interfacial tension (mN/m)	8.54±0.11	7.67±0.25	5.24±0.12	4.34±0.28	3.91±0.16			
	emulsions at pH 5 and different salinities (mg/L)							
	0	25	37.5	50				
interfacial tension (mN/m)	6.84±0.11	8.73 ± 0.36	12.33 ± 0.42	12.91±0.13				

Table S2. Interfacial tension of different systems.

REFERNCES

[1] Ochi, M.; Takahashi, R., Phase Structure and Thermomechanical Properties of Primary and Tertiary Amine - Cured Epoxy/Silica Hybrids. *Journal of Polymer Science Part B Polymer Physics* 2001, *39*, 1071-1084.

[2] Wu, C.; Zhou, S., Laser Light Scattering Study of the Phase Transition of Poly(Nisopropylacrylamide) in Water. 1. Single Chain. *Macromolecules* **1995**, *28*, 8381-8387.

[3] Qingwei Zhang; Ye, J.; Yijie Lu; Ting Nie; Dinghai Xie; Qiliang Song; Hongwei Chen; Guangzhao Zhang; Tang, Y.; Wu, Chi, Synthesis, Folding, and Association of Long Multiblock (PEO₂₃-b-PNIPAM₁₂₄)₇₅₀ Chains in Aqueous Solutions. *Macromolecules* **2008**, *41*, 2228-2234.

[4] Derek Patton, Wolfgang Knoll, Rigoberto C. Advincula, Polymer Loops vs. Brushes on Surfaces: Adsorption, Kinetics, Viscoelastic Behavior of α,ω -Thiol Telechelics on Gold. *Macromolecular Chemistry and Physics* **2011**, *212*, 485-497.

[5] TD Thomas, X-Ray Photoelectron Spectroscopy of Simple Hydrocarbons. *Journal* of Chemical Physics **1970**, *52*, 1373-1380.

[6] Zhao, Y.; Zhou, J.; Xu, X.; Liu, W.; Zhang, J.; Fan, M.; Wang, J., Synthesis and Characterization of a Series of Modified Polyacrylamide. *Colloid & Polymer Science* 2009, 287, 237-241.