Supplementary Information for

Abiotic streamers in a microfluidic system

Nandini Debnath^a, Mahtab Hassanpourfard^b, Ranajay Ghosh^c, Japan Trivedi^d, Mohtada Sadrzadeh^a, Thomas Thundat^b, and Aloke Kumar^{ef}*

^aDepartment of Mechanical Engineering, University of Alberta, Edmonton AB T6G 1H9,

Canada

^bDepartment of Chemical and Materials Engineering, University of Alberta, Edmonton AB T6G

1H9, Canada

^cDepartment of Mechanical and Aerospace Engineering, University of Central Florida, Orlando FL 32816, USA

^dDepartment of Civil and Environmental Engineering, University of Alberta, Edmonton AB T6G 1H9, Canada

^eDepartment of Earth and Environmental Engineering, Columbia University, New York NY

10027, USA

^fDepartment of Mechanical Engineering, Indian Institute of Science, Bengaluru 560012 KA, India

*Corresponding author email: alokekumar@iisc.ac.in

Figure S1: Schematic of the preparation of polymer solution at room temperature. 1g of polymer powder were mixed with 500mL of normal tap water (0.2% w/w PAM solution) and mixed at 600 rpm for at least 3 hours to ensure homogenization.

Weight average	Number average	Polydispersity	Radius of	Relaxation time
molar mass,	molar mass	index (PDI)	gyration, Rw	scale, λ (s)*
$M w \left(\frac{g}{mol}\right)$	$Mn \left(\frac{g}{mol}\right)$		(nm)	
22.6×10^{6}	$7.6 imes 10^{6}$	2.96	191.9	2.07

Table S1: Properties of PAM. (* For 0.2% solution obtained from bulk rheology)

Figure S2. AF4 analysis of different molar mass fraction, differential and cumulative molar mass distribution of PAM (0.2% w/w) solution at room temperature. The weight average molar mass, Mw, was 22.6 × 10⁶ g/mol.

Figure S3. AF4 fractograms of PAM (0.2% w/w) solution showing differential radius and cumulative radius distribution at room temperature. It indicates the small presence of high radius polymer molecules with leading presence of radius $Rw \sim 191.9$ nm.

Figure S4: Control experiments for the investigation of streamer formation confirms that streamer forms for the combined flow of PAM (0.2% w/w) and PS (0.1% w/w) solution only.

Figure S5. Different morphology of streamer formation at various pH values. Streamers formed after one hour for $Q_{PAM}=10\mu$ L/h and $Q_{PS}=30\mu$ L/h at (a) pH=4 and (b) pH=9.

Figure S6: (Left) SEM image of a floc (Right) SEM Image of a streamer fragment. The SEM imaging was done for a mixing volume ratio (PAM:PS) of 1:4 at pH 5 for the floc and flow rate $Q_{PAM}=10\mu$ L/h and $Q_{PS}=40\mu$ L/h for the streamer experiment.

Figure S7: Zeta potential of anionic PAM (0.005%) as a function of pH.

Sample calculation for Weissenberg number:

 $Wi = \lambda \dot{\gamma} = \lambda \frac{U}{L}$ where $\dot{\gamma}$ is the shear rate, U is the velocity scale and L is the length scale. One condition when streamer formation occurs is $Q_{PAM} = 5 \,\mu$ L/h and $Q_{PAM} = 10 \,\mu$ L/h. This yields $U = 7.4 \times 10^{-5}$ m/s. Using $L = 50 \times 10^{-6}$ m and using the relaxation time scale obtained from bulk rheology (Fig. 2) we get $Wi \sim 3$.

Supplementary video

Supplementary video 1: Video shows viscous abiotic streamer formation for short time scale and elastic abiotic streamer formation for long time scale. Video runs at real time and scale bars are 50µm.