Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2018

Hydrogen-Bonded Mesomorphic Complexes Combining Hydrophilic and Fluorophilic

Molecular Segments

Laura Vogel, Dietmar Janietz*

Fraunhofer Institute for Applied Polymer Research, Geiselbergstr. 69, D-14476 Potsdam-Golm,

Germany

Marko Prehm, Carsten Tschierske*

Institute of Chemistry, Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-

Str. 2, D-06120 Halle/Saale, Germany

Supporting Information

Instrumental

Texture observations were made using an Olympus BHS polarizing microscope in conjunction with a Linkam TMH/S 600 hot stage and a Linkam TP 92 control unit. Photo micrographs were obtained with an Olympus E20 digital mirror reflex camera. Calorimetric investigations were performed with a Netzsch DSC 200. Temperature depending IR spectroscopy was performed with a Digilab Scimitar FTS 2000 Series FT-IR spectrometer fitted with a Golden Gate Mk II ATR system (Specac Ltd., England). XRD patterns were recorded with Ni filtered and pin-hole collimated Cu-K_a radiation; usual exposure time was 15 min. A small droplet of the compound was slowly cooled on a glass plate (rate: 0.1 K min⁻¹) on a temperature-controlled heating stage and the sample detector distance was 10.15 cm. Diffraction patterns were recorded with a 2D detector (Vantec 500, Bruker). Photographs of CPK models were obtained with a Nikon D50 digital mirror reflex camera.

Table S1. Small angle X-ray diffraction data for the hexagonal columnar (Col_h) mesophases of the binary (1:3) mixtures and (1:1) mixtures of the (oligo)ethylene glycol substituted diaminotriazine **1** with the two-chain and three-chain partially fluorinated benzoic acids **2-**[$\mathbf{F}_x\mathbf{C}_y$] and **3-**[$\mathbf{F}_x\mathbf{C}_y$].

	Scattering angle	Reflections / nm		Miller indices	Lattice constants
Mixture	(2 <i>θ</i>)	$d_{ m obs}$	$d_{ m calc}$	(hkl)	(a_{hex} / nm)
(1:3) 1/2-[F ₆ C ₄]	3.206	2.76	-	100	3.18
(1:3) 1/3-[F ₆ C ₄]	3.188	2.77	-	100	3.20
(1:3) 1/3-[F ₆ C ₆]	2.985	2.96	-	100	3.42
	5.149	1.72	1.71	110	
	5.944	1.49	1.48	200	
(1:1) 1/2-[F ₆ C ₄]	2.902	3.04	-	100	3.51
	5.041	1.75	1.75	110	
	5.818	1.52	1.52	200	
(1:2) 1/2-[F ₆ C ₄]	3.00	2.94	-	100	3.40
	5.18	1.71	1.70	110	
	5.99	1.47	1.47	200	
(1:1) 1/3-[F ₆ C ₄]	3.068	2.88	-	100	3.33
	6.135	1.44	1.44	200	
	8.027	1.10	1.09	210	
(1:1) 1/3-[F ₆ C ₆]	2.902	3.04	-	100	3.51
	5.037	1.75	1.75	110	
	5.841	1.51	1.52	200	

Mixture	$V_{\text{cell}} (\text{nm}^3)$	$V_{\rm mol}~({\rm nm}^3)$	n_{cell}	triazine/acid adduct
(1:3) 1/2-[F ₆ C ₄]	3.941	2.935	1.34	[1:3]
$(1:3) 1/3-[F_6C_4]$	3.991	3.937	1.01	[1:3]
$(1:3) 1/3-[F_6C_6]$	4.558	4.045	1.13	[1:3]
(1:1) 1/2-[F ₆ C ₄]	4.802	2.114	2.27	[1:2]
	4.802	3.736	1.28	[1:4]
(1:2) 1/2-[F ₆ C ₄]	4.505	2.114	2.13	[1:2]
(1:1) 1/3-[F ₆ C ₄]	4.321	3.937	1.10	[1:3]
(1:1) 1/3-[F ₆ C ₆]	4.802	4.045	1.19	[1:3]

Table S2. Calculations of the molecular volume (V_{mol}), volume of the hypothetical unit cells (V_{cell}) and number of [1:2] or [1:3] triazine/acid adducts in these unit cells (n_{cell}).

 V_{cell} = volume of the unit cell defined by the dimensions $a^2 \ge \sin(60^\circ) \ge 0.45$ nm for hexagonal phases; V_{mol} = volume for a single triazine/acid adduct as calculated using the crystal volume increments;¹ n_{cell} = number of adducts in the unit cell, calculated according to $n_{\text{cell}} = V_{\text{cell}}/V_{\text{mol}}$.

Table S3. Calculation of the amount of phase-separated pure triazine 1 in equimolar mixtures with the fluorinated benzoic acids $2-[F_xC_y]$ and $3-[F_xC_y]^a$.

Mixture	Transition temperature (°C) /	Phase separated triazine 1
	Transition enthalpy (kJ/mol)	
(1:1) $1/2 - [F_6C_4]$	85.9 / 2.78	28.4%
(1:2) 1/2-[F ₆ C ₄]	84.9 / 0.94	9.6%
(1:1) 1/3-[F ₆ C ₄]	84.8 / 1.44	14.7%
$(1:1) 1/3-[F_6C_6]$	85.2 / 2.19	22.4%

^a The content of uncomplexed triazine **1** in the (1:1) mixtures was calculated from the enthalpy values of the phase transition Iso \rightarrow IC* (DSC 2nd cooling); the appropriate value obtained for the pure triazine (85.5°C / 9.8 kJ/mol) was used as reference and set to 100%.

Supplementary figures

a)

Figure S1. (a) XRD pattern of a surface aligned sample of the (1:1) mixture 1/3-[F₆C₄] at 50°C; (b) 2 θ scan over this pattern; (c) Temperature depending XRD pattern of the equimolar mixture 1/3-[F₆C₄].

Figure S2. FT IR spectra on cooling at 50°C. (A) Spectral range from 2700 to 3600 cm⁻¹ of (a) the (1:1) mixture 1/3-[F₆C₆]; (b) the pure diaminotriazine 1. (B) region between 1250 and 1750 cm⁻¹ of (a) the pure benzoic acid 3-[F₆C₆]; (b) the (1:1) mixture 1/3-[F₆C₆]; (c) the pure diaminotriazine 1.

Figure S3. DSC traces (2^{nd} heating with 10 K/min) of the (1:1) and (1:3) mixtures 1/3-[F₆C₄] in comparison.

Figure S4. CPK model showing a [1:4] aggregate of the oligo(ethylene oxide) substituted diaminotriazine **1** with four molecules of the two-chain partially fluorinated benzoic acid **2-[F_6C_4]** with a pronounced circular shape.

Figure S5. (a) Optical texture observed for the hexagonal columnar phase of the (1:2) 1/2-[F₆C₄] mixture; (b) SAXS diffractogram of the Col_h phase of the (1:2) mixture 1/2-[F₆C₄] at 50°C.

1 A. Immirzi, B. Perini, Acta Crystallogr. Sect. A **1977**, 33, 216-218.