# Hydrogen-Bonded Mesomorphic Complexes Combining Hydrophilic and Fluorophilic Molecular Segments 

Laura Vogel, Dietmar Janietz*<br>Fraunhofer Institute for Applied Polymer Research, Geiselbergstr. 69, D-14476 Potsdam-Golm, Germany

Marko Prehm, Carsten Tschierske*
Institute of Chemistry, Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-MothesStr. 2, D-06120 Halle/Saale, Germany

## Supporting Information

## Instrumental

Texture observations were made using an Olympus BHS polarizing microscope in conjunction with a Linkam TMH/S 600 hot stage and a Linkam TP 92 control unit. Photo micrographs were obtained with an Olympus E20 digital mirror reflex camera. Calorimetric investigations were performed with a Netzsch DSC 200. Temperature depending IR spectroscopy was performed with a Digilab Scimitar FTS 2000 Series FT-IR spectrometer fitted with a Golden Gate Mk II ATR system (Specac Ltd., England). XRD patterns were recorded with Ni filtered and pin-hole collimated $\mathrm{Cu}-\mathrm{K}_{\alpha}$ radiation; usual exposure time was 15 min . A small droplet of the compound was slowly cooled on a glass plate (rate: $0.1 \mathrm{~K} \mathrm{~min}^{-1}$ ) on a temperature-controlled heating stage and the sample detector distance was 10.15 cm . Diffraction patterns were recorded with a 2D detector (Vantec 500, Bruker). Photographs of CPK models were obtained with a Nikon D50 digital mirror reflex camera.

Table S1. Small angle X-ray diffraction data for the hexagonal columnar $\left(\mathrm{Col}_{\mathrm{h}}\right)$ mesophases of the binary (1:3) mixtures and (1:1) mixtures of the (oligo)ethylene glycol substituted diaminotriazine 1 with the two-chain and three-chain partially fluorinated benzoic acids $\mathbf{2 - [}\left[\mathbf{F}_{\mathbf{x}} \mathbf{C}_{\mathbf{y}}\right]$ and $\mathbf{3}-\left[\mathbf{F}_{\mathbf{x}} \mathbf{C}_{\mathbf{y}}\right]$.

| Mixture | Scattering angle (2 $\theta$ ) | Reflections / nm |  | Miller indices ( $h k l$ ) | Lattice constants$\left(\mathrm{a}_{\text {hex }} / \mathrm{nm}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $d_{\text {obs }}$ | $d_{\text {calc }}$ |  |  |
| (1:3) 1/2-[ $\left.\mathrm{F}_{6} \mathrm{C}_{4}\right]$ | 3.206 | 2.76 | - | 100 | 3.18 |
| (1:3) $1 / 3-\left[\mathrm{F}_{6} \mathrm{C}_{4}\right]$ | 3.188 | 2.77 | - | 100 | 3.20 |
| (1:3) $1 / 3-\left[\mathrm{F}_{6} \mathrm{C}_{6}\right]$ | 2.985 | 2.96 | - | 100 | 3.42 |
|  | 5.149 | 1.72 | 1.71 | 110 |  |
|  | 5.944 | 1.49 | 1.48 | 200 |  |
| (1:1) $1 / 2-\left[\mathrm{F}_{6} \mathrm{C}_{4}\right]$ | 2.902 | 3.04 | - | 100 | 3.51 |
|  | 5.041 | 1.75 | 1.75 | 110 |  |
|  | 5.818 | 1.52 | 1.52 | 200 |  |
| (1:2) $1 / 2-\left[\mathrm{F}_{6} \mathrm{C}_{4}\right]$ | 3.00 | 2.94 | - | 100 | 3.40 |
|  | 5.18 | 1.71 | 1.70 | 110 |  |
|  | 5.99 | 1.47 | 1.47 | 200 |  |
| (1:1) $1 / 3-\left[\mathrm{F}_{6} \mathrm{C}_{4}\right]$ | 3.068 | 2.88 | - | 100 | 3.33 |
|  | 6.135 | 1.44 | 1.44 | 200 |  |
|  | 8.027 | 1.10 | 1.09 | 210 |  |
| (1:1) $1 / 3-\left[\mathrm{F}_{6} \mathrm{C}_{6}\right]$ | 2.902 | 3.04 | - | 100 | 3.51 |
|  | 5.037 | 1.75 | 1.75 | 110 |  |
|  | 5.841 | 1.51 | 1.52 | 200 |  |

Table S2. Calculations of the molecular volume ( $V_{\text {mol }}$ ), volume of the hypothetical unit cells ( $V_{\text {cell }}$ ) and number of [1:2] or [1:3] triazine/acid adducts in these unit cells ( $n_{\text {cell }}$ ).

| Mixture | $V_{\text {cell }}\left(\mathrm{nm}^{3}\right)$ | $V_{\text {mol }}\left(\mathrm{nm}^{3}\right)$ | $n_{\text {cell }}$ | triazine/acid adduct |
| :---: | :---: | :---: | :---: | :---: |
| (1:3) 1/2-[ $\left.\mathrm{F}_{6} \mathrm{C}_{4}\right]$ | 3.941 | 2.935 | 1.34 | [1:3] |
| (1:3) $1 / 3-\left[\mathrm{F}_{6} \mathrm{C}_{4}\right]$ | 3.991 | 3.937 | 1.01 | [1:3] |
| (1:3) $1 / 3-\left[\mathrm{F}_{6} \mathrm{C}_{6}\right]$ | 4.558 | 4.045 | 1.13 | [1:3] |
| (1:1) 1/2-[ $\left.\mathrm{F}_{6} \mathrm{C}_{4}\right]$ | 4.802 | 2.114 | 2.27 | [1:2] |
|  | 4.802 | 3.736 | 1.28 | [1:4] |
| (1:2) $1 / 2-\left[\mathrm{F}_{6} \mathrm{C}_{4}\right]$ | 4.505 | 2.114 | 2.13 | [1:2] |
| (1:1) 1/3-[ $\left.\mathrm{F}_{6} \mathrm{C}_{4}\right]$ | 4.321 | 3.937 | 1.10 | [1:3] |
| (1:1) 1/3-[ $\left.\mathrm{F}_{6} \mathrm{C}_{6}\right]$ | 4.802 | 4.045 | 1.19 | [1:3] |

$V_{\text {cell }}=$ volume of the unit cell defined by the dimensions $a^{2} \times \sin \left(60^{\circ}\right) \times 0.45 \mathrm{~nm}$ for hexagonal phases;
$V_{\mathrm{mol}}=$ volume for a single triazine/acid adduct as calculated using the crystal volume increments; ${ }^{1}$
$n_{\text {cell }}=$ number of adducts in the unit cell, calculated according to $n_{\text {cell }}=V_{\text {cel }} / V_{\text {mol }}$.

Table S3. Calculation of the amount of phase-separated pure triazine $\mathbf{1}$ in equimolar mixtures with the fluorinated benzoic acids $\mathbf{2}-\left[\mathbf{F}_{\mathrm{x}} \mathbf{C}_{\mathrm{y}}\right]$ and $\mathbf{3}-\left[\mathbf{F}_{\mathrm{x}} \mathbf{C}_{\mathrm{y}}\right]^{\mathrm{a}}$.

| Mixture | Transition temperature $\left({ }^{\circ} \mathrm{C}\right) /$ <br> Transition enthalpy $(\mathrm{kJ} / \mathrm{mol})$ | Phase separated triazine $\mathbf{1}$ |
| :---: | :---: | :---: |
| $\mathbf{( 1 : 1 )} \mathbf{1} \mathbf{2}-\left[\mathbf{F}_{6} \mathbf{C}_{4}\right]$ | $85.9 / 2.78$ | $28.4 \%$ |
| $\mathbf{( 1 : 2 )} \mathbf{1} \mathbf{1}-\left[\mathbf{F}_{6} \mathbf{C}_{4}\right]$ | $84.9 / 0.94$ | $9.6 \%$ |
| $\mathbf{( 1 : 1 )} \mathbf{1 / 3}-\left[\mathbf{F}_{\mathbf{6}} \mathbf{C}_{4}\right]$ | $84.8 / 1.44$ | $14.7 \%$ |
| $\mathbf{( 1 : 1 ) \mathbf { 1 } \mathbf { 3 } - [ \mathbf { F } _ { \mathbf { 6 } } \mathbf { C } _ { 6 } ]}$ | $85.2 / 2.19$ | $22.4 \%$ |

${ }^{\text {a }}$ The content of uncomplexed triazine $\mathbf{1}$ in the (1:1) mixtures was calculated from the enthalpy values of the phase transition Iso $\rightarrow$ IC* (DSC $2^{\text {nd }}$ cooling); the appropriate value obtained for the pure triazine $\left(85.5^{\circ} \mathrm{C} / 9.8 \mathrm{~kJ} / \mathrm{mol}\right)$ was used as reference and set to $100 \%$.

## Supplementary figures



Figure S1. (a) XRD pattern of a surface aligned sample of the (1:1) mixture $\left.\mathbf{1 / 3 - [} \mathbf{F}_{6} \mathbf{C}_{4}\right]$ at $50^{\circ} \mathbf{C}$; (b) $2 \theta$ scan over this pattern; (c) Temperature depending XRD pattern of the equimolar mixture $\mathbf{1 / 3}-\left[\mathbf{F}_{6} \mathbf{C}_{4}\right]$.
A)

B)


Figure S2. FT IR spectra on cooling at $50^{\circ} \mathrm{C}$. (A) Spectral range from 2700 to $3600 \mathrm{~cm}^{-1}$ of (a) the (1:1) mixture $\mathbf{1 / 3}-\left[\mathbf{F}_{6} \mathbf{C}_{6}\right]$; (b) the pure diaminotriazine $\mathbf{1}$. (B) region between 1250 and $1750 \mathrm{~cm}^{-1}$ of (a) the pure benzoic acid $\mathbf{3}-\left[\mathbf{F}_{6} \mathbf{C}_{6}\right]$; (b) the (1:1) mixture $\mathbf{1 / 3}-\left[\mathbf{F}_{\mathbf{6}} \mathbf{C}_{\mathbf{6}}\right]$; (c) the pure diaminotriazine $\mathbf{1}$.


Figure S3. DSC traces ( $2^{\text {nd }}$ heating with $10 \mathrm{~K} / \mathrm{min}$ ) of the $(1: 1)$ and (1:3) mixtures $\mathbf{1} / \mathbf{3}-\left[\mathbf{F}_{\mathbf{6}} \mathbf{C}_{\mathbf{4}}\right]$ in comparison.


Figure S4. CPK model showing a [1:4] aggregate of the oligo(ethylene oxide) substituted diaminotriazine $\mathbf{1}$ with four molecules of the two-chain partially fluorinated benzoic acid $\mathbf{2}-\left[\mathbf{F}_{6} \mathbf{C}_{4}\right]$ with a pronounced circular shape.


Figure S5. (a) Optical texture observed for the hexagonal columnar phase of the (1:2) $\mathbf{1 / 2}-\left[\mathbf{F}_{6} \mathbf{C}_{4}\right]$ mixture; (b) SAXS diffractogram of the $\mathrm{Col}_{\mathrm{h}}$ phase of the (1:2) mixture $\mathbf{1 / 2}-\left[\mathrm{F}_{\mathbf{6}} \mathrm{C}_{\mathbf{4}}\right]$ at $50^{\circ} \mathrm{C}$.

1 A. Immirzi, B. Perini, Acta Crystallogr. Sect. A 1977, 33, 216-218.

