Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2017

Supplementary Information: charge regulation of nonpolar colloids

James E. Hallett,^{1,2} David A. J. Gillespie,¹ Robert M. Richardson,² and Paul Bartlett¹ School of Chemistry, University of Bristol, Bristol BS8 1TS, UK.

 $^{2)}School\ of\ Physics,\ University\ of\ Bristol,\ Bristol\ BS8\ 1TL,\ UK.$

(Dated: Sunday 8th October, 2017)

I. IONIC-MONOMER MODIFIED NP3 NANOPARTICLES

Nanoparticles NP3 were synthesised by a dispersion copolymerization of methyl methacrylate, methacrylic acid, and the ionic monomer n-tridodecyl-propyl-3-methacryloyloxy ammonium tetrakis [3,5-bis (trifluoromethyl) phenyl] borate ([ILM $-(C_{12})$]⁺[TFPB] $^-$) in weight ratios p:q:r of 4:98:2. The molecular structure of the resulting copolymer is illustrated in Figure 1 where the positive quaternary ammonium ions are covalently bound within the core of the nanoparticle, and the [TFPB] $^-$ ions are free to dissociate into the bulk.

Figure 1: Schematic molecular structure of polymeric NP3 nanoparticles.

II. VARIATION OF MOBILITY WITH ADDED ELECTROLYTE

The effect of the concentration of the surfactant AOT on the packing-fraction dependent electrophoretic mobility $\mu_{\rm red}(\eta)$, measured in dispersions of negatively-charged NP1 nanoparticles, is illustrated in Figure 2. Adding aerosol-OT reverse micelles has two effects: (a) we increase the (negative) scaled particle potential Φ_s and, (b) by adding more ions to the dispersion we screen the electrostatic interactions between particles and reduce the dependence of the electrophoretic mobility on the nanoparticle packing fraction η . These trends are apparent from a quick comparison between the mobilities (represented by the

circles) measured for $C_{\text{AOT}} = 5 \,\text{mmol dm}^{-3}$ (shown in Figure 2(a)) and the data recorded at $C_{\text{AOT}} = 250 \,\text{mmol dm}^{-3}$ (shown in Figure 2(d)). The Kuwabara cell model and a constant potential (CP) boundary condition reproduces these trends very well, as shown by the solid lines in Figure 2.

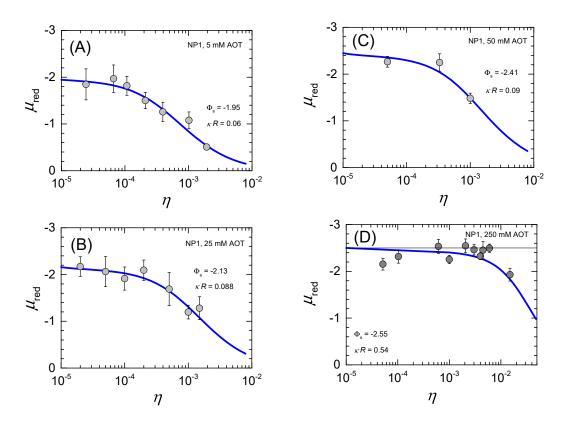


Figure 2: The reduced electrophoretic mobility $\mu_{\rm red}$ as a function of volume fraction in dispersions of NP1 nanoparticles at (a) $C_{\rm AOT} = 5\,{\rm mmol\,dm^{-3}}$; (b) $C_{\rm AOT} = 25\,{\rm mmol\,dm^{-3}}$; (c) $C_{\rm AOT} = 50\,{\rm mmol\,dm^{-3}}$; and (d) $C_{\rm AOT} = 250\,{\rm mmol\,dm^{-3}}$. The solid lines are mobilities calculated using a Kuwabara cell model assuming a constant potential (CP) boundary condition at the surface of the particle. The fitted surface potentials $\Phi_{\rm s}$ and screening parameters κR are reproduced in Table II of the paper.