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Appendix A

This appendix presents mathematical details for the derivation of the integrated phase ordering-

mass transfer model based on the Landau-de Gennes Q-tensor theory and the anisotropic mass 

diffusion equation in time-dependent geometry. The mathematical description of liquid crystals 

used in this paper is at the mesoscopic scale and is written in terms of the second moment of an 

orientation distribution function (ODF) which is the definition of the Q tensor as expressed in eqn. 

(S.1 a-b):

                                                                      (S.1 a-b)
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This symmetric and traceless tensor can be parameterized in terms of the director triad vectors n, 

m, l and two scalar order parameters (S,P) that result from a linear combination of the eigenvalues 

Q. The unit vector n is known as the director or average orientation and S is known as the uniaxial 

scalar order parameter.  From equation ( S.1a ) we find: . Specific : 2 / 3; 2 / 3  Q nn Q n nS S

components of Q such as Qxx are found from: . Likewise nx is found from xx x x x xQ : ; 1  Q δ δ δ δ
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.xn 3 : / 2 Q nδx S

The total free energy density f can be expressed as the sum of the homogeneous contribution which 

is a Landau expansion in terms of appropriate invariants of Q and proportional to the so-called 

nematic potential U. This nematic potential U is a dimensionless concentration with respect to the 

critical phase transition volume fraction. The second contribution to the free energy is known as 

the elastic free energy from modes of deformation, each associated to an elastic constant Li. For 

chiral mesogens we consider two terms, one related to the twist deformation and intrinsic chirality 

associated to L1 and the second encompassing other common modes of deformation and are 

associated to L2. The total free energy F is given in eqn. (S.2 b):

                                         (S.2 a-b)
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where F is the total free energy and f the free energy density. The evolution drives the system to 

the minimum energy given the initial configuration and a given set of boundary constraints. Even 

when the evolution of liquid crystalline materials can be given in terms of n, m, l, S and P, it is 

more convenient to derive the model using directly the components of Q and later extract such 

information from their definitions, which is the approach adopted here. Given the fact the Q tensor 

is not a conservative field, it follows the Langevin-type dynamics where the time derivative of Q 

is proportional to the so-called molecular field, which is the functional derivative of the total free 

energy with respect to variations in Q: , where [s] denotes symmetric and traceless.  [ ]/ Q sF 

The pre-factor corresponds to the mobility as expressed in eqn. (S.3 a):



                               (S.3 a-b) 
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Where is the variable rotational diffusivity and Dr is the bare, single-rod, rotational diffusivity rD

(with reciprocal time dimension i.e. [=] 1/time), c the number of molecules per unit volume, kB the 

Boltzmann constant, T the absolute temperature. The distinguishing feature of the model derived 

for this paper is the variable nematic potential U(x,t) which is a function of the solvent volume 

fraction w(x,t). Therefore the information resulting from changes in the mass transfer equation 

for the solvent w are introduced to the Q(x,t)  tensor dynamics through the nematic potential .  On 

the other hand, the mass transfer equation for the solvent is written in terms of the divergence of 

the mass flux. We consider here an anisotropic constitutive equation with an isotropic Diso and 

anisotropic Dani diffusivity constants.  This anisotropic relationship include gradients in the solvent 

concentration and a bilinear function of Q and  as expressed in eqn. (S.4 a-b):wc

                                                                      (S.4 a-d)
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To derive the equation that takes into account the overall total volume reduction due to water loss 

from the system, we use the mesogen mass conservation within the film.

                                                                                     (S.5 a-c)
( ) ( )

( ) ( )

0; 0

0

c c cV t V t

c
c

V t S t

d dc dV dV
dt dt

dV dS
t

 

 

 


  



 

  v k



where cc is the mesogen mass concentration, v the velocity of the control volume and k the unit 

normal to the corresponding surface. The first term on eqn. (S.5 c) can be expressed in terms of 

the divergence of the flux of the solvent, which then can be transformed to an integral form by 

using Gauss’ integral transformation. Such integral is then evaluated at the relevant surfaces and 

by making use of the cross-section average definition furnishes the equation 
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for the film thickness h(t) (in the vertical direction): 
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The physical interpretation of eqn. (S.6) is given as follows: the rate of change of the film thickness 

is proportional to the flow of water leaving the film through the side boundaries of the geometry, 

however this flow depends on the order of magnitude of the average surface flux multiplied by its 

respective cross section which is being modified (it decreases) as the film shrinks vertically.  The 

integrated phase ordering/mass transfer model in an evolving geometry is given by equations S.3-

S.6 and is solved numerically using finite element methods as discussed in the paper. The number 

of differential equations are five partial differential equations for the Q-tensor, one partial 

differential equation for cw, and one ordinary differential equation for h, for a total of seven 

differential equations.

Appendix B. 

This appendix provides details regarding the particular values of the nematic potential U and its 

impact on the homogeneous free energy. When the homogeneous free energy is expressed in terms 

of the scalar order parameter S, the particular value of U provides with the shape to the function 



and hence indicate the stable thermodynamic state in terms of S.  For collagen solution po has a 

small effect on stability thresholds and is not discussed here; see [7].  The isotropic state is stable 

when U is low and the free energy has only one minimum. Increases in U change the shape of the 

free energy and a second minimum is obtained yet of higher energy than the isotropic state. The 

particular value where the second minimum appears is U** = 8/3. Further increases in U lead to a 

stable ordered state when the second minimum is a lower energy state and the range between 8/3 

and 2.7 corresponds to local metastable state and the upper bound is denoted as UIC and indicates 

both minima have the same energy, thus both states: the disordered and ordered are stable. Higher 

values indicate the ordered state is the stable state and the concentration denominated as U* is the 

metastable limit. These values are depicted in figure S1.

Figure S1. Homogeneous free energy as a function of the scalar order parameter for varying nematic potential U.



 Appendix C. 

This appendix presents additional plots and surface plots to support the discussion in section 4. 

We first present a detailed figure where the height of the film is plotted as a function of time in 

figure S2 for varying  as indicated in the legend.

Figure S2. Film height as a function of time as the film dries. 

The figure shows that the exponential decay of h(t) increases its rate as the time scale ratio  

increases.  The intermediate green curve corresponds to the synchronized phase ordering-water 

removal mode that yield a defect-free film. The lower (blue curve) and faster (red curve) decays 

lead to cellular patterns and polydomain patterns, respectively.

Next we discuss the film patterns in the three regimes: monodomain, monodomain-cellular, and 

polydomain modes.  To elucidate the underlying mechanisms it is best to use different quantities 

related to the Q-tensor (phase ordering) and  choose the scalar order parameter S(y,z,t), and 

Qxx(y,z,t), =Q:xx.  For the water removal rate and thermodynamic transitions we use the mesogen 

dimensionless concentration U(y,z,t) and the two non-zero components of the mass flux vector 



J(y,z,t). We wish to show evidence that when the time scale ratio is lower  <  or higher  > 

 than the critical value ~10-4), a perfectly aligned helix does not emerge, simply because 

the water withdrawal rate is either too slow (monodomain-cellular mode) or too fast (polydomain 

mode), in qualitative agreement with experiments. 

(i) Monodomain Transition Mode (10-4)

Figure S3 shows the surface plots of S and |nx| for increasing times as indicated in figure 4 and the 

curves shown in figure 5 are extracted from the presented surfaces at the halved height of the 

computational domain.  The upper figures  S.3 show a planar stable phase ordering front and a 

decrease in h. The bottom figures S.3 show that the director remains aligned in the interior and 

that it is compatible with the helical front moving from the edges towards the interior.

Figure S3. Scalar order parameter S (a-c) and out of plane component of the director nx (d-f) for increasing times as 
indicated in figure 5, showing a relaxation of S in regions where the stability threshold (U=3) has not been reached 
but the para-nematic director persists leading to a homogeneous helical axis. Monodomain mode for  = 10-4.



(ii) Monodomain-Cellular Mode (10-4)

Figure S4 shows the surface plots of the microstructure in terms of Qxx and the change in the 

mesogen concentration U for increasing times as indicated in figure 6. These surface plots show 

the appearance of the cellular zone due to the presence of a presence of a pre-cholesteric state close 

to the central region as observed in figure 6. 

Figure S4. Qxx surface plot in terms of the spatial coordinates y-z (a-c) for increasing times (t* = 1000, 3000, 8000) in 
the simulations and the nematic potential U (d-e) for the same times for  = 1x10-5 showing a homogeneous helical 
axis forming from the edge toward the central region of the cross section.

(iii) Polydomain  Mode (10-4)

Figure S5 are analogue surface plots to figure S4 for  = 10-3 and shows the inhomogeneity in the 

helix formation due to fast diffusion. The curves associated to the presented microstructure and 

mesogen concentration surfaces are presented in figure 7. 



Figure S5. Qxx surface plot in terms of the spatial coordinates y-z (a-c) for increasing times (t* = 50, 200, 5000) and 
the nematic potential U (d-e) for the same times for  = 1x10-3 , showing a homogeneous helical axis forming from 
the edge toward the central region of the cross section.

Next we focus on the cellular patterns obtained in the central region of the film when water removal 

rates are slow (< *) .  These cellular patterns correspond to distorted 2D blue phases and are 

common in the absence of 1D directed self-assembly [7]. Figure S6 shows and amplification of 

the polygonal structure obtained for the mono-domain/cellular mode (< *)  in terms of Qxx 

(left) and S (right) where it is observed the latter vanishes at the vertices.  The hexagonal cellular 

patterns is clear in the S-plot , which also shows a few penta-hepta defects [7] due to its random 

origin.  The central region of each hexagon is characterized by the presence of non-singular  core 

2+ disclination   and by singular - defects at the N vertices.   The total topological defect charge 

C  inside each cell follows Zimmer’s rule [7]: , which for N=6, yield C=2. 2 / 2 C N



Figure S6. Amplification of the cellular region at the central region of the film for  = 10-5, in the monodomain-
cellular mode.

Next we focus on the relation of the mass flux vector under synchrony ( mondomain mode) and 

under slow water removal rate( monodomain-cellular mode). Figures S7 and S8 present the flux 

vector components Jy and Jz for  = 10-4 and 10-5 respectively for increasing times. The former 

shows the homogeneity in the mass flux vector components for all times of the simulations and 

the latter shows homogeneity for early times but   inhomogeneity for later time.  The non-negligible 

mass flux Jy in the vertical direction is an indication of the loss of stability of the planar 1D phase 

ordering front triggered by slow water removal rate.



Figure S7. Jy and Jz components of the flux for  = 10-4 (monodomain transition mode; perfectly synchronized 
water rate removal) at t = 100 (a-b) and t = 5000 (c-d) showing the homogeneity in the “z” component at all times and 
very weak contributions arising from the microstructure in the “y” component for late times.



Figure S8. Jy and Jz components of the flux for  = 10-5 <  (monodomain-cellular mode; slow water rate removal) 
at t = 1000 (a-b) and t = 8000 (c-d) showing the homogeneity in the “z” component at early times and contributions 
arising from the microstructure in the “y” component at later times.


