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Appendix A

This appendix presents mathematical details for the derivation of the integrated phase ordering-
mass transfer model based on the Landau-de Gennes Q-tensor theory and the anisotropic mass
diffusion equation in time-dependent geometry. The mathematical description of liquid crystals
used in this paper is at the mesoscopic scale and is written in terms of the second moment of an

orientation distribution function (ODF) which is the definition of the Q tensor as expressed in eqn.

(S.1 a-b):
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This symmetric and traceless tensor can be parameterized in terms of the director triad vectors n,
m, | and two scalar order parameters (S,P) that result from a linear combination of the eigenvalues
Q. The unit vector n is known as the director or average orientation and S is known as the uniaxial

scalar order parameter. From equation ( S.1a ) we find: Q:nn=25/3;Q-n=25n/3. Specific

components of Q such as Qy are found from: Q _ =Q:8.6 ;0 -6 =1. Likewise n, is found from
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n =3Q:nd,/2S.

The total free energy density f can be expressed as the sum of the homogeneous contribution which
is a Landau expansion in terms of appropriate invariants of Q and proportional to the so-called
nematic potential U. This nematic potential U is a dimensionless concentration with respect to the
critical phase transition volume fraction. The second contribution to the free energy is known as
the elastic free energy from modes of deformation, each associated to an elastic constant L,. For
chiral mesogens we consider two terms, one related to the twist deformation and intrinsic chirality
associated to L; and the second encompassing other common modes of deformation and are

associated to L,. The total free energy F is given in eqn. (S.2 b):
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where F'is the total free energy and f the free energy density. The evolution drives the system to
the minimum energy given the initial configuration and a given set of boundary constraints. Even
when the evolution of liquid crystalline materials can be given in terms of n, m, I, S and P, it is
more convenient to derive the model using directly the components of Q and later extract such
information from their definitions, which is the approach adopted here. Given the fact the Q tensor
is not a conservative field, it follows the Langevin-type dynamics where the time derivative of Q

is proportional to the so-called molecular field, which is the functional derivative of the total free
energy with respect to variations in Q: [§F / 5QF] , where [s] denotes symmetric and traceless.

The pre-factor corresponds to the mobility as expressed in eqn. (S.3 a):
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Where H, is the variable rotational diffusivity and D, is the bare, single-rod, rotational diffusivity

(with reciprocal time dimension i.e. [=] 1/time), ¢ the number of molecules per unit volume, kg the
Boltzmann constant, 7 the absolute temperature. The distinguishing feature of the model derived
for this paper is the variable nematic potential U(x,t) which is a function of the solvent volume
fraction @y(x,t). Therefore the information resulting from changes in the mass transfer equation
for the solvent ¢, are introduced to the Q(x,t) tensor dynamics through the nematic potential . On
the other hand, the mass transfer equation for the solvent is written in terms of the divergence of
the mass flux. We consider here an anisotropic constitutive equation with an isotropic D;y, and
anisotropic D,,; diffusivity constants. This anisotropic relationship include gradients in the solvent

concentration and a bilinear function of Q and V¢, as expressed in eqn. (S.4 a-b):
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To derive the equation that takes into account the overall total volume reduction due to water loss

from the system, we use the mesogen mass conservation within the film.
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where c. is the mesogen mass concentration, v the velocity of the control volume and k the unit
normal to the corresponding surface. The first term on eqn. (S.5 c) can be expressed in terms of
the divergence of the flux of the solvent, which then can be transformed to an integral form by

using Gauss’ integral transformation. Such integral is then evaluated at the relevant surfaces and

j A(x,1)dS
by making use of the cross-section average definition <A>(t) =3 furnishes the equation
[as
N
for the film thickness h(t) (in the vertical direction):
dh _2h(t) / . wan
—=— t S.6
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The physical interpretation of eqn. (S.6) is given as follows: the rate of change of the film thickness
is proportional to the flow of water leaving the film through the side boundaries of the geometry,
however this flow depends on the order of magnitude of the average surface flux multiplied by its
respective cross section which is being modified (it decreases) as the film shrinks vertically. The
integrated phase ordering/mass transfer model in an evolving geometry is given by equations S.3-
S.6 and is solved numerically using finite element methods as discussed in the paper. The number
of differential equations are five partial differential equations for the Q-tensor, one partial
differential equation for c,, and one ordinary differential equation for h, for a total of seven

differential equations.

Appendix B.

This appendix provides details regarding the particular values of the nematic potential U and its
impact on the homogeneous free energy. When the homogeneous free energy is expressed in terms

of the scalar order parameter S, the particular value of U provides with the shape to the function



and hence indicate the stable thermodynamic state in terms of S. For collagen solution p, has a
small effect on stability thresholds and is not discussed here; see [7]. The isotropic state is stable
when U is low and the free energy has only one minimum. Increases in U change the shape of the
free energy and a second minimum is obtained yet of higher energy than the isotropic state. The
particular value where the second minimum appears is U** = 8/3. Further increases in U lead to a
stable ordered state when the second minimum is a lower energy state and the range between 8/3
and 2.7 corresponds to local metastable state and the upper bound is denoted as Ujc and indicates
both minima have the same energy, thus both states: the disordered and ordered are stable. Higher
values indicate the ordered state is the stable state and the concentration denominated as U* is the

metastable limit. These values are depicted in figure S1.
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Figure S1. Homogeneous free energy as a function of the scalar order parameter for varying nematic potential U.



Appendix C.

This appendix presents additional plots and surface plots to support the discussion in section 4.
We first present a detailed figure where the height of the film is plotted as a function of time in

figure S2 for varying I1 as indicated in the legend.
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Figure S2. Film height as a function of time as the film dries.
The figure shows that the exponential decay of h(t) increases its rate as the time scale ratio I1
increases. The intermediate green curve corresponds to the synchronized phase ordering-water
removal mode that yield a defect-free film. The lower (blue curve) and faster (red curve) decays

lead to cellular patterns and polydomain patterns, respectively.

Next we discuss the film patterns in the three regimes: monodomain, monodomain-cellular, and
polydomain modes. To elucidate the underlying mechanisms it is best to use different quantities
related to the Q-tensor (phase ordering) and choose the scalar order parameter S(y,zt), and
Qx«(V,z,t),=Q:8,0«. For the water removal rate and thermodynamic transitions we use the mesogen

dimensionless concentration U(y,z,t) and the two non-zero components of the mass flux vector



J(y,z,t). We wish to show evidence that when the time scale ratio is lower IT < IT* or higher IT >
IT* than the critical value IT*~O(10%), a perfectly aligned helix does not emerge, simply because
the water withdrawal rate is either too slow (monodomain-cellular mode) or too fast (polydomain
mode), in qualitative agreement with experiments.

(1) Monodomain Transition Mode (IT*=10%)
Figure S3 shows the surface plots of S and |n,| for increasing times as indicated in figure 4 and the
curves shown in figure 5 are extracted from the presented surfaces at the halved height of the
computational domain. The upper figures S.3 show a planar stable phase ordering front and a
decrease in h. The bottom figures S.3 show that the director remains aligned in the interior and

that it is compatible with the helical front moving from the edges towards the interior.
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Figure S3. Scalar order parameter S (a-c) and out of plane component of the director n, (d-f) for increasing times as
indicated in figure 5, showing a relaxation of S in regions where the stability threshold (U=3) has not been reached
but the para-nematic director persists leading to a homogeneous helical axis. Monodomain mode for IT = IT*=10*.



(i1) Monodomain-Cellular Mode (T1<I1*=10)
Figure S4 shows the surface plots of the microstructure in terms of Q,, and the change in the
mesogen concentration U for increasing times as indicated in figure 6. These surface plots show
the appearance of the cellular zone due to the presence of a presence of a pre-cholesteric state close

to the central region as observed in figure 6.
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Figure S4. Q.. surface plot in terms of the spatial coordinates y-z (a-c) for increasing times (¢ = 1000, 3000, 8000) in
the simulations and the nematic potential U (d-e) for the same times for /7= 1x10~ showing a homogeneous helical
axis forming from the edge toward the central region of the cross section.

(iii))  Polydomain Mode (TT>IT*=104)
Figure S5 are analogue surface plots to figure S4 for IT= 10-* and shows the inhomogeneity in the
helix formation due to fast diffusion. The curves associated to the presented microstructure and

mesogen concentration surfaces are presented in figure 7.
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Figure S5. Q.. surface plot in terms of the spatial coordinates y-z (a-c) for increasing times (" = 50, 200, 5000) and
the nematic potential U (d-e) for the same times for /7= 1x10-3 , showing a homogeneous helical axis forming from
the edge toward the central region of the cross section.

Next we focus on the cellular patterns obtained in the central region of the film when water removal
rates are slow (II<IT *) . These cellular patterns correspond to distorted 2D blue phases and are
common in the absence of 1D directed self-assembly [7]. Figure S6 shows and amplification of
the polygonal structure obtained for the mono-domain/cellular mode (II<IT *) in terms of Q,,
(left) and S (right) where it is observed the latter vanishes at the vertices. The hexagonal cellular
patterns is clear in the S-plot , which also shows a few penta-hepta defects [7] due to its random

origin. The central region of each hexagon is characterized by the presence of non-singular core

A?* disclination and by singular 1~ defects at the N vertices. The total topological defect charge

C inside each cell follows Zimmer’s rule [7]: C = (N —2)/2, which for N=6, yield C=2.
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Figure S6. Amplification of the cellular region at the central region of the film for IT = 107, in the monodomain-
cellular mode.

Next we focus on the relation of the mass flux vector under synchrony ( mondomain mode) and
under slow water removal rate( monodomain-cellular mode). Figures S7 and S8 present the flux
vector components J,, and J; for IT = 10 and 10~ respectively for increasing times. The former
shows the homogeneity in the mass flux vector components for all times of the simulations and
the latter shows homogeneity for early times but inhomogeneity for later time. The non-negligible
mass flux J, in the vertical direction is an indication of the loss of stability of the planar 1D phase

ordering front triggered by slow water removal rate.
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Figure S7. J, and J, components of the flux for IT = IT*=10-* (monodomain transition mode; perfectly synchronized
water rate removal) at t = 100 (a-b) and t = 5000 (c-d) showing the homogeneity in the “z” component at all times and
very weak contributions arising from the microstructure in the “y” component for late times.
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Figure S8. J, and J, components of the flux for IT = 10~ < IT* (monodomain-cellular mode; slow water rate removal)
,att=1000 (a-b) and t = 8000 (c-d) showing the homogeneity in the “z” component at early times and contributions
arising from the microstructure in the “y” component at later times.



