
Supporting information
S1. Relation between the pressure jump across the
particle–laden interface and the surface pressure of
absorbed monolayer.
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Figure 1 Symbols: the normalised pressure difference between the inside
and outside of a spherical drop versus the normalised surface pressure
as computed from the simulation. Continuous line: equation ∆p/(2γ/R) =
1−Πs/γ.

To make sure FIPI yields the correct pressure field across the
fluid interface, an initial spherical drop is gradually compressed by
an attached particle monolayer. The pressure difference between
inside and outside of the drop is explicitly calculated from sim-
ulations. The results are compared with Young-Laplace equation
incorporated with surface pressure. The simulations done by FIPI
accurately capture the real pressure difference under different sur-
face pressure created by the particle monolayer.

S2. Proof of independence of surface pressure on
particle size for a linear inter–particle force rela-
tion.
For a hexagonal array, the relation between the average inter-
particle separation and φs is
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Assuming nearest neighbour interactions within hexagonal
packing, the packing energy can be estimated as
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The coordination number Nc is independent of a. Therefore Πs ≈
Ep
2A ∝ φ

1/2
s
〈
Fpi
〉
/a, which proves that Πs is approximately indepen-

dent of a when
〈
Fpi
〉

∝ a for fixed φs. The linear inter-particle force
model (4) employed in this paper enjoys this property as it allows
to investigate the effects caused by changing only the particle size.

S3. Convergence of buckling time with decreasing
s
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Figure 2 Normalised buckling time vs. nondimensional diffusion length
s for f = 10.0 and Πs/γ = 1.71. The dashed line is the value calculated
according to equation (8).

The parameter s =

√
Mµ

ε
defines the magnitude of the diffu-

sion of phase field variable with respect to a certain fluid interface
thickness. It is necessary that s has to be large enough to keep
the thickness of fluid interface as constant. On the other hand, for
fluid interface with finite thickness, any finite value of s will damp
the fluid velocity around fluid interface to some extent. As a result
the fluid interface takes longer to buckle as s increases, which is
shown in Figure 2. The convergence of buckling time is achieved
by decreasing s to 0 while keeping the fluid interface thickness ε

as constant.

S3. Equivalence between increasing spring con-
stant k at fixed liquid volume and decreasing liquid
volume at fixed spring constant k
In our simulation, changing the volume of the drop at fixed spring
constant k or increasing k for fixed liquid volume leads, qualita-
tively, to the same results. The reason for this behaviour is that
the pressure in an incompressible fluid is a Lagrange multiplier
that depends - for a given value of the energy associated to the
particle-covered interface - only on the volume of the fluid com-
prised within the interface. In other words, the value of the pres-
sure across the interface adjusts itself to the drop volume and the
configuration of the particle monolayer with respect to the fluid
interface, regardless of whether the drop volume is reduced by
keeping the monolayer fixed, or the monolayer area is artificially
“expanded” by keeping the volume fixed and increasing the surface
pressure.

Figure 3 shows snapshots from two simulations. In one simu-
lation (Fig. 3 TOP), the volume of the drop is kept fixed and the
surface pressure increased by increasing k. In the other, the spring
constant is kept constant and the volume of the drop slowly de-
creased in a quasi-static manner. The essential geometric features
of the two buckled morphologies are the same in the two figures.
We do not expect, of course, to obtain identical morphologies, as
the buckling instability is highly sensitive to the exact configura-
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Figure 3 Buckled morphology for (TOP) the case in which the spring con-
stant k is increased and the volume of the drop is kept constant and (BOT-
TOM) for the case in which the spring constant is kept fixed and the drop
volume is reduced.

tion of each particle.
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