

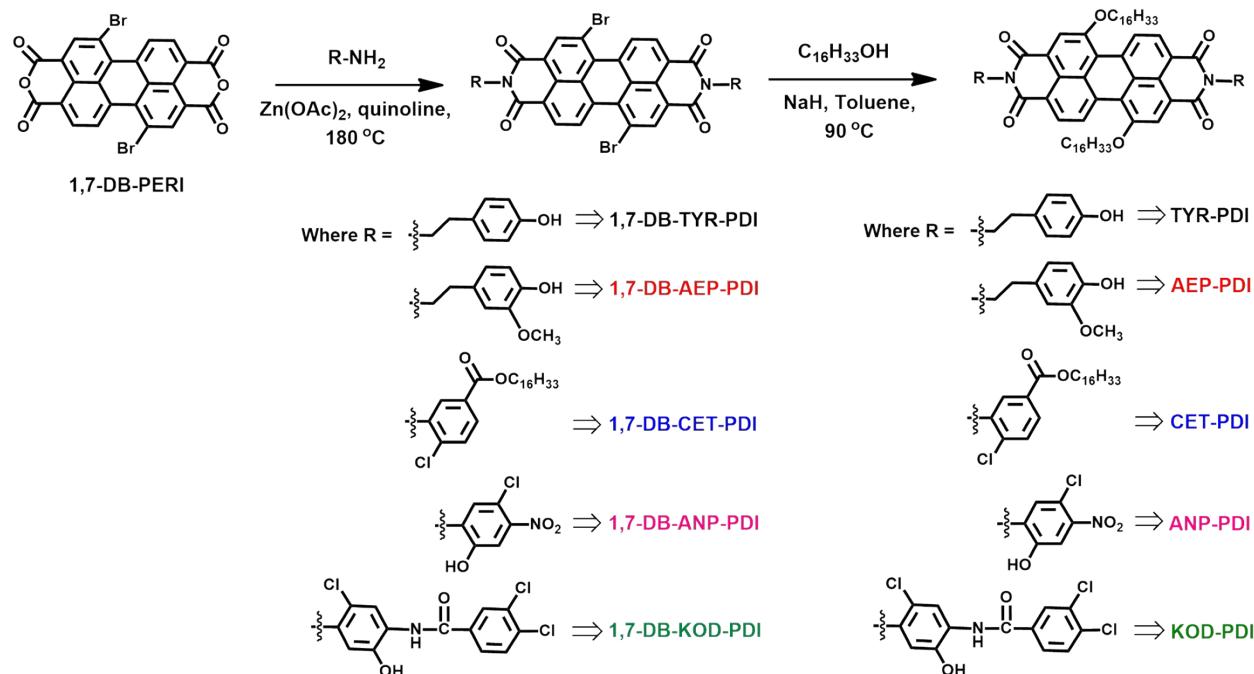
ELECTRONIC SUPPORTING INFORMATION (ESI) for

Influence of imide-substituents on the H-type aggregates of perylene diimides bearing cetylxy side-chains at bay positions†

Michael Ruby Raj,^{*ab} Rajamani Margabandu,^c Ramalinga Viswanathan Mangalaraja,^{*b} Sambandam Anandan^{*a}

^aNanomaterials & Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli-620015, India.

^bAdvanced Ceramics and Nanotechnology Laboratory, Department of Materials Engineering, Faculty of Engineering, University of Concepcion, Concepcion- 4070409, Chile.


^cDepartment of Chemistry, Brindavan College, Bhoopasandra, Bangalore-560094, India.

*Corresponding authors: rmichael@udec.cl (M. Ruby Raj); mangal@udec.cl (R.V. Mangalaraja) & sanand99@yahoo.com (S. Anandan).

S. no.	Table of Contents	Pages
1	Synthetic methods for the synthesis of intermediate compounds and perylene diimides (TYR-PDI , AEP-PDI , CET-PDI , ANP-PDI and KOD-PDI)	2
2	Synthetic methods for the preparation of intermediates compounds	2
3	Synthetic methods for the final perylene diimides derivatives	4
4	Figure S1. The extended temperature-dependent absorption spectrum of 0–0 and 0–1 vibrational peaks in the region of 470–530 nm for the corresponding PDIs: (a) TYR-PDI ; (b) AEP-PDI ; (c) CET-PDI ; (d) ANP-PDI ; (e) KOD-PDI in chloroform/methylcyclohexane (CHCl ₃ /MCH ratio of 1:5) mixed solvent (condition: $C_T = 2 \times 10^{-5}$ M) during cooling process from 90 to 30 °C.	7
5	Figure S2. (a) The photoluminescence spectra of PDIs in thin-film prepared by spin-coating at 1000 rpm and at room temperature. (b) The extended emission spectrum of PDI thin-films.	7
6	Figure S3. Cyclic voltammetry curves of PDI, (a) in solution and (b) in thin films, in ACN solution containing 0.1 M n-Bu ₄ NPF ₆ as electrolyte. The measurements were recorded from thin films of PDIs drop-casted from chloroform solutions onto a glassy carbon disk as the working electrode (3.0 mm in diameter) against Ag/Ag ⁺ as a reference. Each measurement was calibrated with ferrocene at a scan rate of 50 mV s ⁻¹ .	8
7	Figure S4. The top view of optimized geometry structure of PDIs: (a) TYR-PDI , (b) AEP-PDI , (c) CET-PDI , (d) ANP-PDI and (e) KOD-PDI by using AM1 Hamiltonian semi-empirical methods.	9
8	Figure S5. Typical SEM images of the rod-like microstructures formed by (a) TYR-PDI ; (b) AEP-PDI ; (c) CET-PDI ; (d) ANP-PDI ; (e) KOD-PDI in methanol-DCM mixed solvents. The SEM image of (c) is obtained at different places indicates the different size of rod-like microstructure with relatively smooth surface and regular edges governed by CET-PDI . SEM images of columnar rectangular ordered H-type PDI aggregates formed in methanol-DCM mixed solvents with volume ratios of 50/50. The scale bar of all images is 10 μm.	10
9	Figure S6. Photographs of Water (top) and Glycerol droplets (bottom) on the surface of PDI derivative thin films with their respective contact angles.	10
10	Table S1. The optical properties of aggregate state of PDIs formed at high and low temperature.	11
11	Table S2. The fluorescence life-time results of PDIs.	12
12	Table S3. The electrochemical properties and computational results of PDIs.	12
13	Table S4. Packing parameters derived from XRD measurements.	13
14	Table S5. Contact angles and calculated interfacial energy of PDI thin-films using water and glycerol as hydrophilic liquids.	14

1. Synthetic methods for the synthesis of intermediate compounds and perylene diimides (TYR-PDI, AEP-PDI, CET-PDI, ANP-PDI and KOD-PDI).

The compound of 1,7-dibromo-3,4:9,10-perylenetetracarboxylic dianhydride (**1,7-DB-PERI**) was synthesized according to previously reported procedures.¹⁻⁴ The substituted alkyl/aromatic amine compounds were previously reported by our groups.⁵ The imidization reaction of 1,7-dibromo-3,4:9,10-perylenetetracarboxylic dianhydride with substituted alkyl/aromatic amine compounds were carried out according to following procedures.

Scheme S1. Synthetic routes for the synthesis of intermediate compounds of PDIs and imide-substituents substituted perylene diimides bearing long linear cetyloxy side-chains functionalized at the 1,7-bay positions (**TYR-PDI**, **AEP-PDI**, **CET-PDI**, **ANP-PDI** and **KOD-PDI**).

2. Synthetic methods for the preparation of intermediate compounds.

2.1. Synthesis of 5,12-Dibromo-2,9-bis(4-hydroxyphenethyl)anthra[2,1,9-def:6,5,10-d'e'f']diisoquinoline-1,3,8,10(2H,9H)-tetraone (**1,7-DB-TYR-PDI**).

A mixture of 1,7-Dibromo-3,4:9,10-perylenetetracarboxylic dianhydride (**1,7-DIBROMO-PERI**) (1 g, 1.8181 mmol), 4-(2-aminoethyl)phenol (Tyramine, **1**) (0.55 g, 4.00 mmol), and $Zn(OAc)_2 \cdot 2H_2O$ (0.399 g, 1.8181 mmol) in quinoline (10 mL) was heated at $180^\circ C$ for overnight under nitrogen atmosphere. After being cooled to room temperature, the reaction mixture was poured into HCl (2 N aq., 25 mL) and stirred for 15 min. The resulting precipitate

was filtered off, washed with water (25 mL) and methanol (25 mL), and dried under vacuum to obtain a crude product. The crude product was column chromatographed on silica gel using initially started with 100% DCM to finally a mixture of CH_2Cl_2 /methanol (98:2 v/v) as eluent. The collected pure fractions were concentrated under vacuum to afford pure product. The resulting product was dissolved in a minimum volume of CH_2Cl_2 and precipitated by the addition of methanol to afford regio isomerically pure **1,7-DB-TYR-PDI** upon three successive recrystallizations as reddish brown powder; yield: 77% (1.1 g). $^1\text{H-NMR}$ (400 MHz, CDCl_3) δ 8.69 (d, 2H, $J=9.02$ Hz, H-perylene), 8.12 (d, 2H, $J=9.02$ Hz, H-perylene), 7.56 (d, 2H, $J=7.24$ Hz, H-perylene), 7.05 (d, 4H, $J=7.76$ Hz, C–H aromatic), 6.60 (d, 2H, $J=7.04$ Hz, C–H aromatic), 5.37 (brs, 2H, O–H aromatic), 3.68 (t, 4H, C–H aliphatic), 2.33 (t, 4H, C–H aliphatic). HR-MASS: calcd for $\text{C}_{40}\text{H}_{24}\text{Br}_2\text{N}_2\text{O}_6$ (m/z): 788.44 [M^+]; found: 789.20 [$\text{M}+1$]. Anal. Calcd. for $\text{C}_{40}\text{H}_{24}\text{Br}_2\text{N}_2\text{O}_6$: C, 60.93; H, 3.07; N, 3.55. Found: C, 60.58; H, 3.22; N, 3.81.

2.2. *Synthesis of 5,12-Dibromo-2,9-bis(4-hydroxy-3-methoxyphenethyl)anthra[2,1,9-def:6,5,10-d'e'f']diisoquinoline-1,3,8,10(2H,9H)-tetraone (1,7-DB-AEP-PDI).*

The above compound was synthesized similar to the synthetic procedure for the synthesis of compound (**1,7-DB-TYR-PDI**). But starting from the compound of 4-(2-aminoethyl)-2-methoxyphenol (**2**) (0.67 g, 4.00 mmol). The isolated product yield is 65 % (1.0 g) as reddish brown powder. $^1\text{H-NMR}$ (400 MHz, CDCl_3) δ 8.73 (d, 2H, $J=3.6$ Hz, H-perylene), 7.72 (d, 2H, $J=10.4$ Hz, H-perylene), 7.54 (d, 2H, $J=8.4$ Hz, H-perylene), 6.88 (q, 4H, C–H aromatic), 6.72 (d, 2H, $J=1.6$ Hz, C–H aromatic), 5.84 (brs, 2H, O–H aromatic), 3.78 (s, 6H, C–H aromatic). HR-MASS: calcd for $\text{C}_{42}\text{H}_{28}\text{Br}_2\text{N}_2\text{O}_8$ (m/z): 848.49 [M^+]; found: 844 [$\text{M}-4$]. Anal. Calcd. for $\text{C}_{42}\text{H}_{28}\text{Br}_2\text{N}_2\text{O}_8$: C, 59.45; H, 3.33; N, 3.30. Found: C, 58.96; H, 3.74; N, 3.81.

2.3. *Synthesis of Dihexadecyl 3,3'-(5,12-dibromo-1,3,8,10-tetraoxoanthra[2,1,9-def:6,5,10-d'e'f']diisoquinoline-2,9(1H,3H,8H,10H)-diyl)bis(4-chlorobenzoate) (1,7-DB-CET-PDI).*

The above compound was synthesized similar to the synthetic procedure for the synthesis of compound (**1,7-DB-TYR-PDI**). But starting from the compound of hexadecyl 3-amino-4-chlorobenzoate (**3**) (1.58 g, 4.00 mmol). The isolated product yield is 77 % (1.83 g) as bright orange powder. $^1\text{H-NMR}$ (400 MHz, CDCl_3) δ 7.47 (d, 2H, $J=1.76$ Hz, H-perylene), 7.39 (d, 2H, $J=1.80$ Hz, H-perylene), 7.37 (d, 2H, $J=1.8$ Hz, H-perylene), 7.32 (s, 2H, H-aromatic), 7.30 (d, 2H, $J=1.72$ Hz, C–H aromatic), 7.28 (s, 2H, C–H aromatic), 4.30 (t, 4H, C–H aliphatic), 1.79–1.72 (m, 4H, C–H aliphatic), 1.43–1.27 (m, 60H, C–H aliphatic), 0.90 (m, 6H, C–H aliphatic). HR-MASS: calcd for $\text{C}_{70}\text{H}_{78}\text{Br}_2\text{Cl}_2\text{N}_2\text{O}_8$ (m/z): 1306.09 [M^+]; found: 1310.5 [$\text{M}+4$]. Anal. Calcd. for $\text{C}_{70}\text{H}_{78}\text{Br}_2\text{Cl}_2\text{N}_2\text{O}_8$: C, 64.37; H, 6.02; N, 2.14. Found: C, 63.90; H, 6.41; N, 2.49.

2.4. *Synthesis of 5,12-dibromo-2,9-bis(5-chloro-2-hydroxy-4-nitrophenyl)anthra[2,1,9-def:6,5,10-d'e'f']diisoquinoline-1,3,8,10(2H,9H)-tetraone (1,7-DB-ANP-PDI).*

The above compound was synthesized similar to the synthetic procedure for the synthesis of compound (**1,7-DB-TYR-PDI**). But starting from the compound of 2-amino-4-chloro-5-nitrophenol (**4**) (0.75 g, 4.00 mmol). The isolated product yield is 74 % (1.2 g) as reddish-brown powder. ¹H-NMR (400 MHz, CDCl₃) δ 8.50 (d, 2H, *J*=1.72 Hz, H-perylene), 7.99 (d, 2H, *J*=1.8 Hz, H-perylene), 7.73 (d, 2H, *J*=2.44 Hz), 7.62 (q, 4H, *J*=1.82 Hz, C–H-aromatic), 7.16 (d, 2H, *J*=6.2Hz, C–H aromatic), 5.36 (brs, 2H, O–H aromatic). HR-MASS: calcd for C₃₆H₁₂Br₂Cl₂N₄O₁₀ (m/z): 891.22 [M⁺]; found: 887 [M–4]. Anal. Calcd. for C₃₆H₁₂Br₂Cl₂N₄O₁₀: C, 48.52; H, 1.36; N, 6.29. Found: C, 48.02; H, 1.78; N, 6.44.

2.5. *Synthesis of N,N'-(5,12-dibromo-1,3,8,10-tetraoxoanthra[2,1,9-def:6,5,10-d'e'f']diisoquinoline-2,9(1H,3H,8H,10H)-diyl)bis(5-chloro-2-hydroxy-4,1-phenylene))bis(3,4-dichlorobenzamide) (**1,7-DB-KOD-PDI**).*

The above compound was synthesized similar to the synthetic procedure for the synthesis of compound (**1,7-DB-TYR-PDI**). But starting from the compound of N-(4-amino-5-chloro-2-hydroxyphenyl)-3,4-dichlorobenzamide (**5**) (1.33 g, 4.00 mmol). The isolated product yield is 81 % (1.74 g) as reddish-orange solid. ¹H-NMR (400 MHz, CDCl₃) δ 9.38 (br, 2H, N–H aromatic), 8.55 (s, 2H, *J*=10.4 Hz, H-perylene), 8.23 (d, 2H, *J*=8.12 Hz H-perylene), 7.80 (d, 2H, *J*=8 Hz, C–H aromatic), 7.65 (d, 2H, *J*=1.64 Hz, C–H aromatic), 7.10 (d, 2H, *J*=1.54 Hz, C–H aromatic), 6.8 (d, 2H, *J*=1.72 Hz, C–H aromatic), 5.77 (brs, 2H, O–H aromatic). HR-MASS: calcd for C₅₀H₂₀Br₂Cl₆N₄O₈ (m/z): 1177.24 [M⁺]; found: 1178.05 [M+1]. Anal. Calcd. for C₅₀H₂₀Br₂Cl₆N₄O₈: C, 51.01; H, 1.71; N, 4.76. Found: C, 50.67; H, 2.03; N, 4.90.

3. Synthetic methods for the final perylene diimide derivatives:

3.1. *Synthesis of 5,12-bis(hexadecyloxy)-2,9-bis(4-hydroxyphenethyl)anthra[2,1,9-def:6,5,10-d'e'f']diisoquinoline-1,3,8,10(2H,9H)-tetraone (**TYR-PDI**).*

A mixture of **1** (0.5 g, 0.6341 mmol), Cetyl alcohol (0.54 g, 2.22 mmol), and sodium hydride (NaH, 60 % dispersion in mineral oil) (58 mg, 2.41 mmol) in 30 ml anhydrous toluene were heated to 85–90 °C for 12 h under argon atmosphere. The progress of the reaction was monitored by Thin Layer Chromatography for every 2 hr using DCM/hexane (4:1) as an eluent. The reddish brown reaction mass was cooled to room temperature and then poured into ice water (100 mL) containing 2N HCl solution. The yielded precipitate was filtered on a G4 funnel, washed with hot water (~50 mL), and finally rinsed with methanol and dried under vacuum. The crude product was chromatographed on silica gel 230–400 mesh using CHCl₃/acetone (30 : 1 ratio) as eluent to afford the product: **reddish brown powder; yield: 88% (0.62 g)**. ¹H-NMR (400 MHz, DMSO-d₆) δ 7.41 (s, 2H, H-perylene), 7.30 (d, 2H, *J*=9.02 Hz, H-perylene), 7.08 (d, 2H, *J*=7.24 Hz, H-perylene), 6.69 (d, 4H, *J*=7.76 Hz, C–H aromatic), 6.60 (d, 2H, *J*=7.04 Hz, C–H aromatic), 5.66 (brs, 2H, O–H aromatic), 4.22–4.19 (t, 4H, C–H aliphatic), 3.88 (q, 4H, C–H aromatic), 3.69

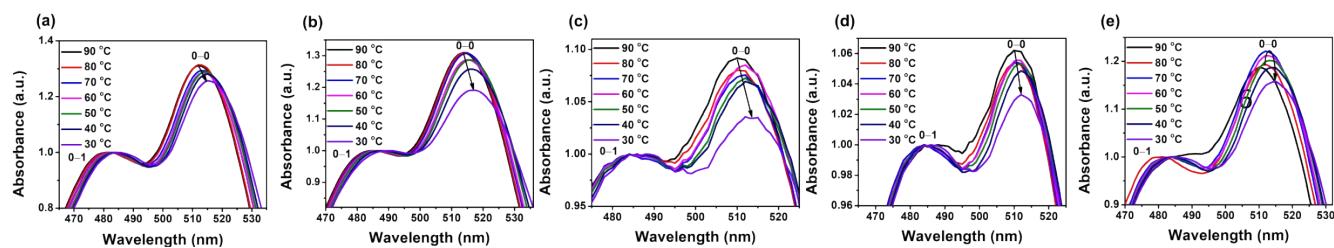
(t, 6H, C–H aliphatic), 2.87 (brs, 4H, C–H aliphatic), 1.67 (t, 4H, C–H aliphatic), 1.36–1.22 (m, 60H, C–H aliphatic), 0.85 (t, 6H, C–H aliphatic). ESI-MASS: calcd for $C_{72}H_{90}N_2O_8$ (m/z): 1110.67 [M^+]; found: 1128.10 [$M+NH_4$]. Anal. Calcd. for $C_{72}H_{90}N_2O_8$: C, 77.80; H, 8.16; N, 2.52. Found: C, 77.38; H, 8.02; N, 2.70.

3.2. Synthesis of 5,12-Bis(hexadecyloxy)-2,9-bis(4-hydroxy-3-methoxyphenethyl)anthra[2,1,9-def:6,5,10-d'e'f]diisoquinoline-1,3,8,10(2H,9H)-tetraone (AEP-PDI).

The above compound was synthesized similar to the synthetic procedure for the synthesis of compound (**TYR-PDI**). But starting from the compound (**1,7-DB-AEP-PDI**) (0.5 g, 0.59 mmol), Cetyl alcohol (0.50 g, 2.06 mmol), and NaH (54 mg, 2.24 mmol) in 30 mL anhydrous toluene. The product was obtained after column purification using $CHCl_3$ /acetone (30:1 ratio) as eluent. The isolated product yield is 87 % (0.6 g) as **reddish brown solid**. 1H -NMR (400 MHz, DMSO- d_6) δ 7.53 (s, 1H, H-perylene), 7.45 (s, 1H, H-perylene), 7.34 (d, 2H, $J=9$ Hz, H-perylene), 7.18 (d, 2H, $J=7.3$ Hz, C–H aromatic), 6.69 (d, 4H, $J=7.76$ Hz, C–H aromatic), 6.60 (d, 2H, $J=7.04$ Hz, C–H aromatic), 5.66 (brs, 2H, O–H aromatic), 4.20 (t, 4H, C–H aliphatic), 3.88 (brs, 4H, C–H aromatic), 3.69 (d, 6H, C–H aliphatic), 2.69 (brs, 4H, C–H aliphatic), 1.68–1.64 (q, 4H, C–H aliphatic), 1.36–1.33 (m, 60H, C–H aliphatic), 0.84 (t, 6H, C–H aliphatic). ESI-MASS: calcd for $C_{74}H_{94}N_2O_{10}$ (m/z): 1170.69 [M^+]; found: 1139.09 [$M-2NH_4$]. Anal. Calcd. for $C_{74}H_{94}N_2O_{10}$: C, 75.86; H, 8.09; N, 2.39; Found: C, 75.32; H, 8.15; N, 2.50.

3.3. Synthesis of Dihexadecyl 3,3'-(5,12-bis(hexadecyloxy)-1,3,8,10-tetraoxoanthra[2,1,9-def:6,5,10-d'e'f]diisoquinoline-2,9(1H,3H,8H,10H)-diyl)bis(4-chlorobenzoate) (CET-PDI).

The above compound was synthesized similar to the synthetic procedure for the synthesis of compound (**TYR-PDI**). But starting from the compound (**1,7-DB-CET-PDI**) (0.5 g, 0.38 mmol), Cetyl alcohol (0.32 g, 1.32 mmol), and NaH (35 mg, 1.45 mmol) in 30 ml anhydrous toluene. The product was obtained after column purification using $CHCl_3$ /acetone (30:1 ratio) as eluent. The isolated product yield is 95 % (0.59 g) as **bright orange solid**. 1H -NMR (400 MHz, DMSO- d_6) δ 7.47 (d, 2H, $J=1.76$ Hz, H-perylene), 7.39 (d, 2H, $J=1.8$ Hz H-perylene), 7.37 (q, 2H, $J=1.8$ Hz and $J=1.8$ Hz, H-perylene), 7.32 (d, 2H, $J=1.2$ Hz, C–H-aromatic), 7.30 (m, 2H, C–H aromatic), 7.28 (d, 2H, C–H aromatic), 4.29 (t, 8H, C–H aliphatic), 1.79–1.72 (m, 8H, C–H aliphatic), 1.43–1.27 (m, 120H, C–H aliphatic), 0.90 (m, 12H, C–H aliphatic). ESI-MASS: calcd for $C_{102}H_{144}Cl_2N_2O_{10}$ (m/z): 1627.02 [M^+]; found: 1645 [$M+NH_4$]. Anal. Calcd. for $C_{102}H_{144}Cl_2N_2O_{10}$: C, 75.20; H, 8.91; N, 1.72; Found: C, 74.88; H, 9.01; N, 1.90.


3.4. Synthesis of 2,9-bis(5-chloro-2-hydroxy-4-nitrophenyl)-5,12-bis(hexadecyloxy)anthra[2,1,9-def:6,5,10-d'e'f]diisoquinoline-1,3,8,10(2H,9H)-tetraone (ANP-PDI).

The above compound was synthesized similar to the synthetic procedure for the synthesis of compound (**TYR-PDI**). But starting from the compound (**1,7-DB-ANP-PDI**) (0.5 g, 0.56 mmol), Cetyl alcohol (0.47 g, 1.96 mmol), and NaH (51 mg, 2.12 mmol) in 30 ml anhydrous toluene. The product was obtained after column purification using CHCl_3 /acetone (30:1 ratio) as eluent. The isolated product yield is 80 % (0.55 g) as reddish-brown solid. $^1\text{H-NMR}$ (400 MHz, DMSO-d_6) δ 7.45 (d, 2H, $J=1.74$ Hz, H-perylene), 7.39 (d, 2H, $J=1.8$ Hz H-perylene), 7.25 (q, 2H, $J=1.82$ Hz and $J=1.82$ Hz, H-perylene), 6.73 (d, 2H, $J=1.82$ Hz, C–H-aromatic), 6.50 (d, 2H, $J=9.0$ Hz, C–H aromatic), 5.66 (brs, 2H, O–H aromatic), 4.18 (t, 4H, C–H aliphatic), 2.00–1.68 (m, 4H, C–H aliphatic), 1.70–1.63 (q, 4H, C–H aliphatic), 1.50–1.20 (m, 60H, C–H aliphatic), 0.88 (t, 6H, C–H aliphatic). ESI-MASS: calcd for $\text{C}_{68}\text{H}_{78}\text{Cl}_2\text{N}_4\text{O}_{12}$ (m/z): 1212.50 [M^+]; found: 1194.80 [M-NH_4]. Anal. Calcd. for $\text{C}_{68}\text{H}_{78}\text{Cl}_2\text{N}_4\text{O}_{12}$: C, 67.26; H, 6.47; N, 4.61; Found: C, 67.04; H, 6.85; N, 4.95.

3.5. Synthesis of N,N' -((5,12-bis(hexadecyloxy)-1,3,8,10-tetraoxoanthra[2,1,9-def:6,5,10-d'e'f']diisoquinoline-2,9(1H,3H,8H,10H)-diyl)bis(5-chloro-2-hydroxy-4,1-phenylene))bis(3,4-dichlorobenzamide) (**KOD-PDI**).

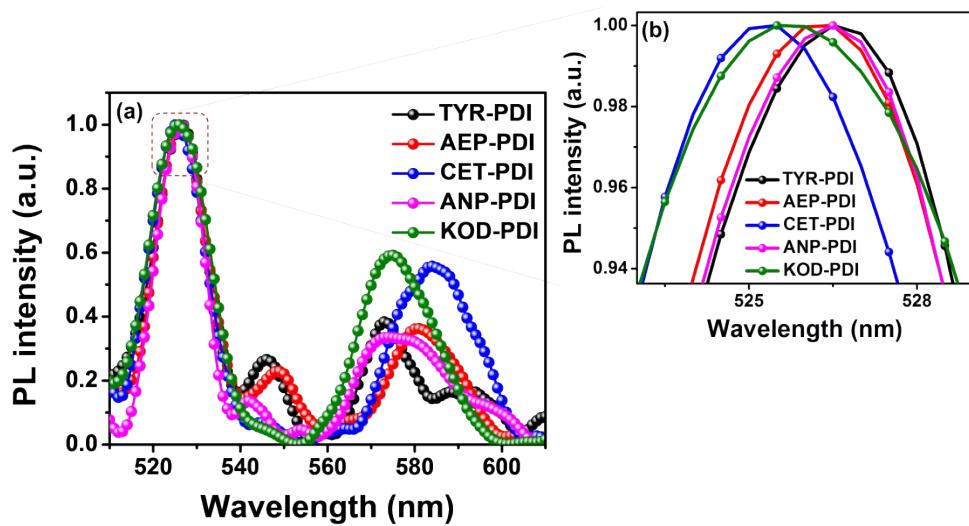
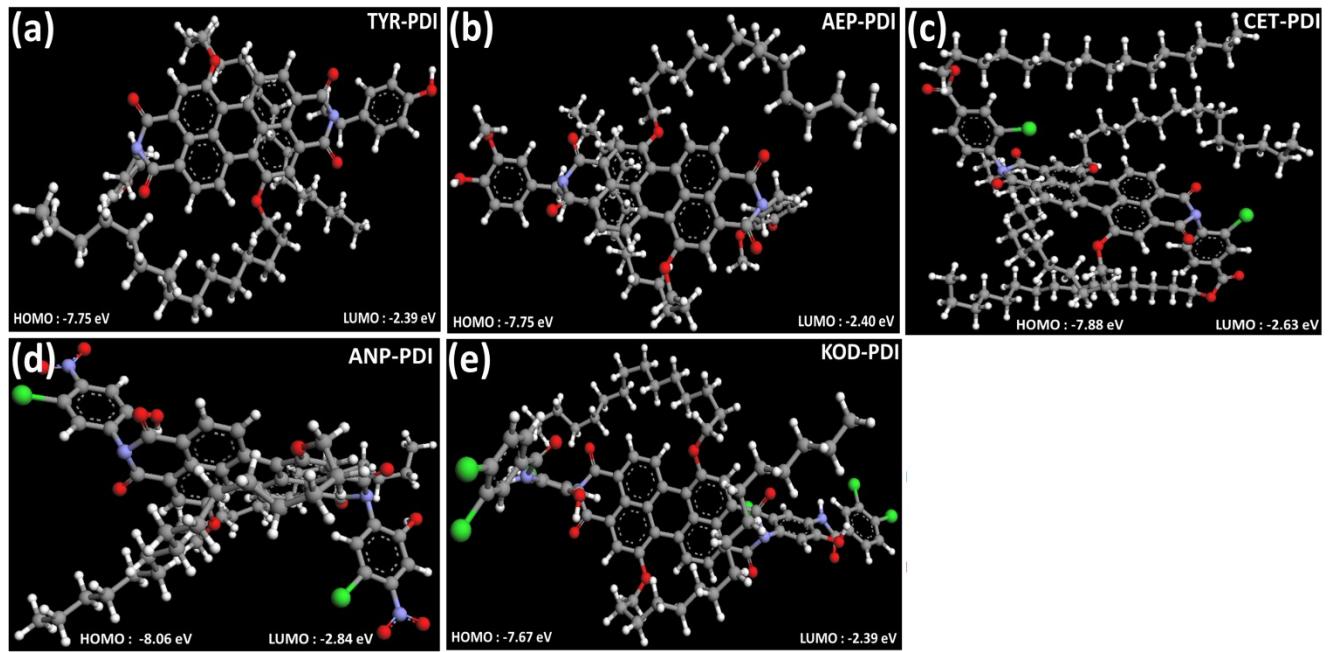
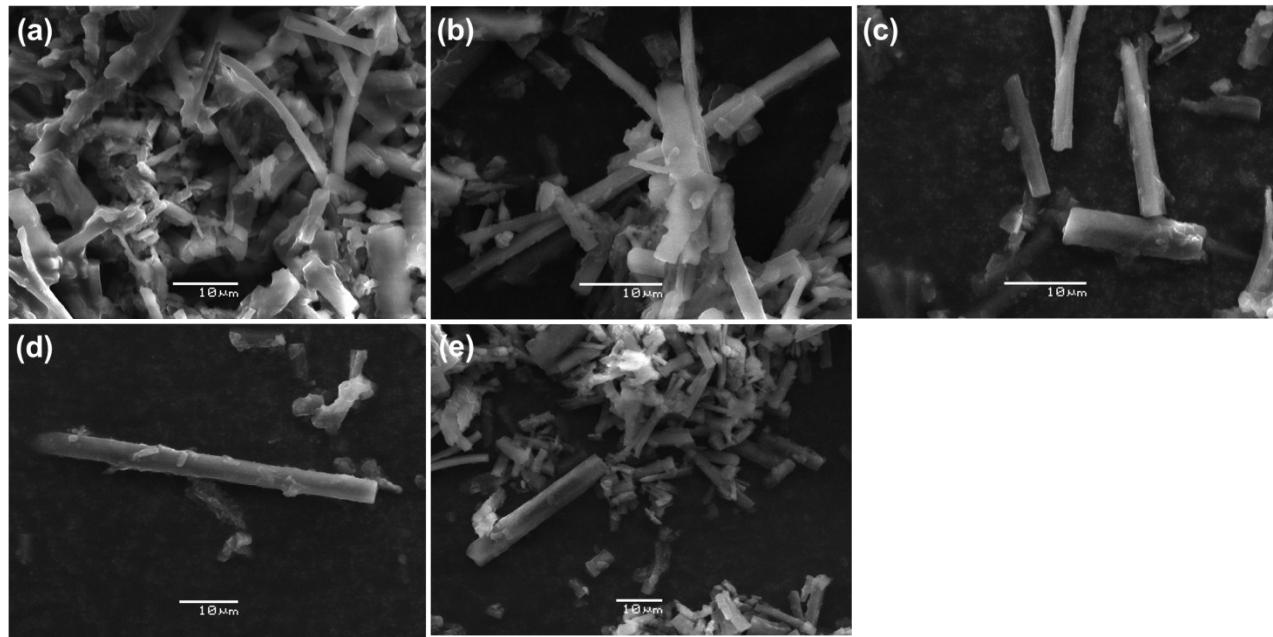

The above compound was synthesized similar to the synthetic procedure for the synthesis of compound (**TYR-PDI**). But starting from the compound (**1,7-DB-KOD-PDI**) (0.5 g, 0.425 mmol), Cetyl alcohol (0.36 g, 1.48 mmol), and NaH (39 mg, 1.61 mmol) in 30 ml anhydrous toluene. The product was obtained after column purification using CHCl_3 /acetone (30:1 ratio) as eluent. The isolated product yield is 92 % (0.58 g) as reddish-orange solid. $^1\text{H-NMR}$ (400 MHz, DMSO-d_6) δ 9.58 (brs, 2H, N–H aromatic), 8.18 (s, 2H, H-perylene), 7.91 (d, 2H, $J=8.12$ Hz H-perylene), 7.78 (d, 2H, $J=8$ Hz, C–H aromatic), 7.41 (d, 2H, $J=1.64$ Hz, C–H aromatic), 7.29 (t, 4H, C–H aromatic), 5.66 (brs, 2H, O–H aromatic), 4.23–4.09 (t, 4H, C–H aliphatic), 1.70–1.63 (q, 4H, C–H aliphatic), 1.37–1.22 (m, 60H, C–H aliphatic), 0.85 (t, 6H, C–H aliphatic). ESI-MASS: calcd for $\text{C}_{82}\text{H}_{86}\text{Cl}_6\text{N}_4\text{O}_{10}$ (m/z): 1496.45 [M^+]; found: 1514.02 [M+NH_4]. Anal. Calcd. for $\text{C}_{82}\text{H}_{86}\text{Cl}_6\text{N}_4\text{O}_{10}$: C, 65.65; H, 5.78; N, 3.73; Found: 65.27; H, 5.91; N, 3.94.

Figure S1. The extended temperature-dependent absorption spectrum of 0–0 and 0–1 vibrational peaks in the region of 470–530 nm for the corresponding PDIs: (a) **TYR-PDI**; (b) **AEP-PDI**; (c)



CET-PDI; (d) ANP-PDI; (e) KOD-PDI in chloroform/methylcyclohexane (CHCl_3/MCH ratio of 1:5) mixed solvent (condition: $C_T = 2 \times 10^{-5}$ M) during cooling process from 90 to 30 °C.


Figure S2. (a) The photoluminescence spectra of PDIs in thin-film prepared by spin-coating at 1000 rpm and at room temperature. (b) The extended emission spectrum of PDI thin-films.


Figure S3. Cyclic voltammetry curves of PDI compounds, (a) in solution and (b) in thin films, in ACN solution containing 0.1 M $\text{n-Bu}_4\text{NPF}_6$ as electrolyte. The measurements were recorded from chloroform solution (concentration of 5 mM) as well as thin films of PDIs drop-casted from chloroform solutions onto a glassy carbon disk as the working electrode (3.0 mm in diameter) against Ag/Ag^+ as a reference. Each measurement was calibrated with ferrocene at a scan rate of 50 mV s⁻¹.

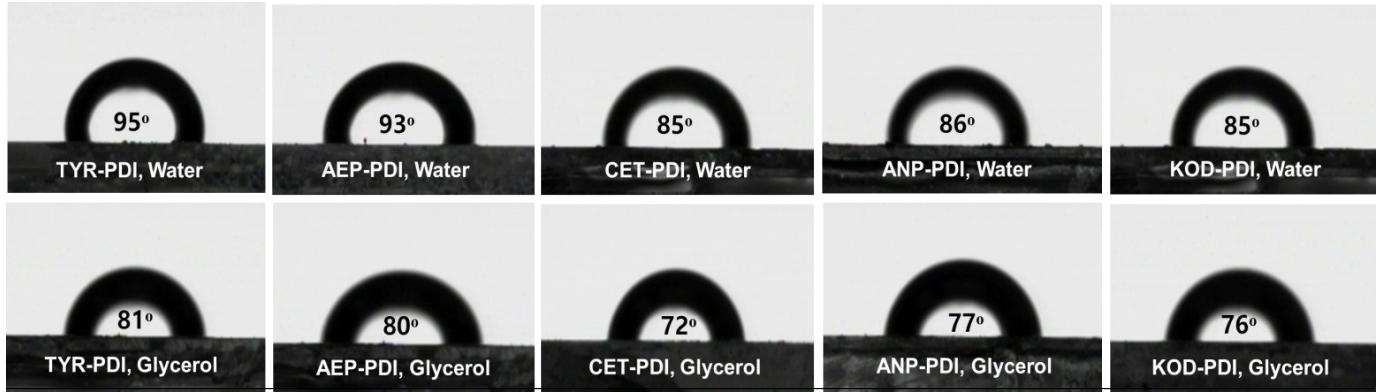

Figure S4. The top view of optimized geometry structure of PDIs: (a) **TYR-PDI**, (b) **AEP-PDI**, (c) **CET-PDI**, (d) **ANP-PDI** and (e) **KOD-PDI** by using AM1 Hamiltonian semi-empirical methods.

Figure S5. Typical SEM images of the rod-like microstructures formed by (a) **TYR-PDI**; (b) **AEP-PDI**; (c) **CET-PDI**; (d) **ANP-PDI**; (e) **KOD-PDI** in methanol-DCM mixed solvents. The SEM image of (c) is obtained at different places indicates the different size of rod-like microstructure with relatively smooth surface and regular edges governed by **CET-PDI**. SEM images of columnar rectangular ordered H-type PDI aggregates formed in methanol-DCM mixed solvents with volume ratios of 50/50. The scale bar of all images is 10 μm .

Figure S6. Photographs of Water (top) and Glycerol droplets (bottom) on the surface of PDI thin films with their respective contact angles.

Table S1. The optical properties of aggregate state of PDIs formed at high and low temperature.

Perylene Diimides	condition	$\lambda_{max}^{0-0 soln}$ (nm) ^a	$\lambda_{max}^{0-1 soln}$ (nm) ^a	$\lambda_{max}^{Sh.p soln}$ (nm) ^b	A_{0-0}/A_{0-1}
TYR-PDI	90 °C	512	482	--	1.34

	30 °C	515	484	561	1.29	
	90 °C	514	485	--	1.33	
AEP-PDI						
Perylene Diimides		Emission (wavelength in nm)			t_f (ns) (τ_1 , τ_2 & τ_3)	
	30 °C	515	410	488	560 ^a ₈₀ & 1.31 ^b ₀₃	
ANP-PDI	TRY-PDI	510	440	488	0.96 & 3.91 ^b ₀₆	
	30 °C	512	565	486	561 ^a ₃₅ & 3.91 ₀₃	
KOD-PDI	90 °C	510	410	484	0.90 & 1.42 ^b ₁₇	
	AEP-PDI	515	440	484	560 ^a ₉₀ & 1.54 ^b ₁₅	
			540		0.79 & 1.60	
CET-PDI		395			0.85 & n.d.	
		490			0.81 & 2.65	
		565			0.93 & 4.52	
ANP-PDI		395			0.82 & n.d.	
		495			0.50 ^a ₅₀ & 4.84 ^b	
		565			1.43 & 3.98	
KOD-PDI		490			0.81, 1.56 & 5.70	
		570			0.78, 2.22 & 5.96	
		635			0.57, 1.81 & 5.71	

Table S2. The fluorescence lifetime results of PDIs.

Table

n.d.: not detected

S3. The electrochemical properties and computational results of PDIs.

Perylene Diimides	E_{Oxd}^{CV} (V) ^a	E_{Red}^{CV} (V) ^a	E_{HOMO}^{CV} (eV) ^a	E_{LUMO}^{CV} (eV) ^a	E_{Oxd}^{CV} (V) ^b	E_{Red}^{CV} (V) ^b	E_{HOMO}^{CV} (eV) ^b	E_{LUMO}^{CV} (eV) ^b	E_{HOMO}^{AM1} (eV) ^c	E_{LUMO}^{AM1} (eV) ^c
----------------------	------------------------------------	------------------------------------	--------------------------------------	--------------------------------------	------------------------------------	------------------------------------	--------------------------------------	--------------------------------------	---------------------------------------	---------------------------------------

TYR-PDI	1.059	-0.395	-5.37	-3.92	1.102	-0.735	-5.41	-3.57	-7.75	-2.39
AEP-PDI	1.056	-0.482	-5.36	-3.82	1.065	-0.701	-5.37	-3.61	-7.75	-2.40
CET-PDI	0.994	-0.479	-5.30	-3.83	1.040	-0.757	-5.35	-3.55	-7.88	-2.63
ANP-PDI	1.092	-0.674	-5.40	-3.63	1.028	-0.693	-5.34	-3.62	-8.06	-2.84
KOD-PDI	1.040	-0.653	-5.35	-3.66	1.045	-0.696	-5.35	-3.61	-7.67	-2.39

E_{ox} is onset oxidation potential and E_{red} is onset reduction potential are estimated by using Cyclic voltammetric (CV) analysis, ^aCyclic voltammetry determined in chloroform solution (Conc., of 5 mM) of PDIs vs. Fc/Fc⁺ ($E_{\text{HOMO}} = -4.80$ eV); ^bCyclic voltammetry determined in thin-film of PDIs vs. Fc/Fc⁺ ($E_{\text{HOMO}} = -4.80$ eV) as an internal standard; ^cComputational analysis was performed by using Austin Model 1 (AM1) Hamiltonian semi-empirical method.

Table S4. Packing parameters derived from XRD measurements.

Perylene diimides		Crystallographic parameters		
	2θ (degree)	d-spacing (Å)	Miller index (hkl)	Phase (lattice constants)
TYR-PDI	3.20	27.58	(100)	
	6.45	13.69	(200)	Col_{rd} ($a = 27.38 \text{ \AA}$) ($b = 14.40 \text{ \AA}$)
	6.95	12.75	(110)	
	9.46	9.34	(300)	
	12.25	7.22		
	13.03	6.79	(400)	
	16.50	5.37	(500)	
	18.00	4.93	(600)	
	19.63	4.52	(700)	
	22.66	3.92	(002)	
	25.92	3.44	(102)	
AEP-PDI	3.27	27.0	(100)	
	6.53	13.53	(200)	Col_{rp} ($a = 27.06 \text{ \AA}$) ($b = 14.40 \text{ \AA}$)
	6.95	12.75	(110)	
	9.40	9.40	(300)	
	13.11	6.75	(400)	
	13.65	6.48		
	16.42	5.39	(500)	
	18.14	4.89	(600)	
	19.73	4.50	(700)	
	22.75	3.90	(002)	
	26.02	3.42	(102)	
CET-PDI	3.27	27.00	(100)	
	6.54	13.50	(200)	Col_{rp} ($a = 27.00 \text{ \AA}$) ($b = 14.43 \text{ \AA}$)
	6.97	12.78	(110)	
	9.40	9.34	(300)	
	12.31	7.18	(400)	
	13.11	6.75		
	16.44	5.39	(500)	
	18.10	4.90	(600)	
	19.71	4.50	(700)	
	22.73	3.91	(002)	
	26.00	3.42	(102)	
ANP-PDI	3.25	27.20	(100)	
	6.53	13.53	(200)	Col_{rp} ($a = 27.06 \text{ \AA}$) ($b = 14.40 \text{ \AA}$)
	6.95	12.75	(110)	
	9.44	9.36	(300)	
	12.31	7.18	(400)	
	13.10	6.76		
	16.42	5.39	(500)	
	18.08	4.90	(600)	
	19.71	4.50	(700)	
	22.73	3.91	(002)	
	26.00	3.42	(102)	
KOD-PDI	3.25	27.20	(100)	
	6.53	13.53	(200)	Col_{rp} ($a = 27.06 \text{ \AA}$) ($b = 14.40 \text{ \AA}$)
	6.95	12.75	(110)	
	9.38	9.42	(300)	
	12.31	7.18	(400)	
	13.11	6.75		
	16.46	5.38	(500)	
	18.08	4.90	(600)	
	19.69	4.50	(700)	
	22.73	3.91	(002)	
	25.60	3.47	(102)	

Col_{rp} : Columnar rectangular ordered phase; Col_{rd} : Columnar rectangular disordered phase.

Table S5. Contact angles and calculated interfacial energy of PDI derivative films using water and glycerol as hydrophilic liquids.

PDI	θ_{water} (deg)	θ_{glycerol} (deg)	Interfacial energy (mN m ⁻¹)
TYR-PDI	95	81	24.9
AEP-PDI	93	80	24.5
CET-PDI	85	72	29.0
ANP-PDI	86	77	24.0
KOD-PDI	85	76	24.7

References

1. A. Böhm, H. Arms, G. Henning and P. Blaschka, (BASF AG) German Pat. DE 19547209 A1, 1997.
2. F. Würthner, V. Stepanenko, Z. Chen, C. R. Saha-Möller, N. Kocher and D. Stalke, *J. Org. Chem.*, 2004, **69**, 7933–7939.
3. P. Rajasingh, R. Cohen, E. Shirman, L. J. W. Shimon and B. Rybtchinski, *J. Org. Chem.*, 2007, **72**, 5973–5979.
4. M. R. Raj, S. Ramkumar and S. Anandan, *RSC Adv.*, 2013, **3**, 5108–5120.
5. M. R. Raj, K. Arun, M. Ashokkumar and S. Anandan, *org. prep. proc. int.: New J. Org. Synth.*, 2012, **44**, 271–280.