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MOLECULAR DYNAMICS SIMULATIONS

Simulations of bottlebrush, comb-like, and linear polymer solutions are performed using
the coarse-grained bead-spring model of Kremer and Grest [1]. An individual macromolecule
is composed of Nbb backbone monomers (modeled as excluded volume spheres), which are
connected by bonds. To these backbone monomers, we connect side chains with grafting
density z. Each side chain contains Nsc monomers, which are identical to the monomers of
the backbone. The total number of beads in a molecule is Nbb(1 +Nscz).

The non-bonded interactions between monomers separated by a distance r are modeled
by the truncated and shifted Lennard-Jones (LJ) potential,

V LJ(r) =

{
4ε [(σ/r)12 − (σ/r)6 + C] r ≤ rc
0 r > rc,

(S1)

where the interaction strength, ε, is measured in units of thermal energy, kBT , σ is the
monomer diameter, rc is the cutoff, and C is the shift of the potential introduced to avoid a
discontinuity at r = rc. We use ε = kBT , C = 1/4, and rc = 21/6 σ. This choice of parameters
results in purely repulsive interactions between monomers, ensuring good solvent conditions
at all values of kBT . For computational efficiency we do not include attractive interactions
which would only be of interests if one wants to vary the solvent quality [2].

The bonded interactions in a molecule are mimicked by the Kremer-Grest potential [1],
V KG(r) = V FENE(r)+V LJ(r), with the “finitely extensible nonlinear elastic” (FENE) potential

V FENE = −1

2
kr2F ln

[
1− (r/rF)2

]
. (S2)

Here, the bond spring-constant is k = 30 ε/σ2, and the maximum bond length is rF = 1.5σ
[1]. All simulations are performed in a cubic box with periodic boundary conditions imposed
in all spatial dimensions.

We use the Velocity-Verlet algorithm [3] to solve the Langevin equation of motion for the
position ri of each monomer with mass m,

mr̈i = FLJ

i + FFENE

i − ζ ṙi + FR

i . (S3)

The forces FLJ
i and FFENE

i respectively follow from the LJ (Eq. S1) and the FENE (Eq. S2)
interaction potentials. The third and fourth term on the right hand side of Eq. (S3) are
a slowly evolving viscous force, −ζ ṙi, and a rapidly fluctuating stochastic force, FR

i . The
random force, FR

i , is related to the friction coefficient, ζ, by the fluctuation-dissipation
theorem, 〈FR

i (t)FR
j (t′)〉 = kBTζδijδ(t− t′). The friction coefficient used in our simulations is
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ζ = 0.5mτ−1, where τ =
√
mσ2/ε is the LJ time unit. The integration step is taken to be

∆τ = 0.005τ , and the thermal energy is constant at kBT = 1. All simulations are carried
out using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [4],
and the simulation snapshots are rendered using the program Visual Molecular Dynamics
(VMD) [5]. Initially, molecules are grown using a self-avoiding random walk technique and
placed randomly in the simulation cell. The initial concentration of all systems is small, c ≈
5 · 10−4 σ−3. To obtain the desired concentration, the simulation box is gradually decreased
in size at constant velocity 10−3 σ/τ . Once the target density is reached, simulations are
continued for up to at least three relaxation times of the corresponding system. During
the equilibration stage, the molecules diffuse on average at least over the root-mean-square
end-to-end distance of their backbones.

Simulations of solutions are carried out for linear (z = 0), comb-like (z = 1/3), and
bottlebrush (z ≥ 1) polymers for a fixed number of backbone monomers, Nbb = 100, in
the range of concentration varied from c = 0.001σ−3 (dilute solutions) to c = 0.85σ−3

(melts). The number of monomers per side chain is varied between Nsc = 0 and Nsc = 16
for bottlebrushes with z = 1 or z = 2 side chains attached to each backbone monomer. For
macromolecules with z = 1/3, the number of side chains monomers is fixed to Nsc = 32.
In addition, for dilute solutions of bottlebrushes (c = 0.001σ−3), the number of backbone
monomers is varied (Nbb=50, 100, and 200) as well as the number of side chain monomers
(Nsc = 1, 2, 4, 8, 16, 32, and 64) and the grafting density (z = 1, 2, 3, and 4).

SCALING ANALYSIS

Before presenting our scaling analysis for the concentration-dependent properties of bot-
tlebrush conformations, we would like to discuss briefly how our approach compares to the
previous models by Birshtein et al. [6] and Fredrickson [7], which start out from rod-like
backbones, at least, on a local scale. To do so, we revisit our starting point, the free energy
of the cylindrical subsegment as given by Eq. (1) in the main text. Instead of minimizing the
free energy with respect to l0 and Rsc,0, one may assume a stiff backbone inside the cylinder,
i.e., l0 ∝ n0. Minimization of F with respect to Rsc,0 then yields

Rsc,0 ∝ N3/4
sc z1/4. (S4)

The above scaling law for the size of side chains is known for bottlebrushes with rod-like
backbones, see Refs. [6–8].

The spatial distance between grafting points for bottlebrushes with rod-like backbones,
d, may be derived from a simple scaling approach,

Rsc,0 = g̃(r0/d) ∝ N3/4
sc z1/4, (S5)

where r0 ∝ N3/5 denotes the size of a linear (not grafted) chain in dilute solution, and g̃(x)
is a scaling function. This ansatz leads to

d ∝ z−1 (S6)

and, thus, to a rigid backbone inside the cylinder. The very same idea can be applied to the
side chain scaling derived in the main text for bottlebrushes with semi-flexible backbones
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[see Eq. (3) in the limit Nscz � 1 , i.e., Rsc ∝ N
7/10
sc z1/10]. The scaling argument yields

d ∝ z−3/5, (S7)

such that the spatial distance between grafting points resembles a self-avoiding walk statistics
[9]. This is the fundamental difference between the scaling law of Eq. (S4) and our result,
cf. Eq. (3).

In the following, we present our scaling analysis for concentrations ranging from semi-
dilute solutions to melts. The macromolecules start to overlap as the concentration is in-
creased above their overlap concentration, c > c1. With Eq. (6), the overlap concentration
reads

c1 ∝
Nbb(1 +Nscz)

R3
0

∝ N
−4/5
bb (1 +Nscz)−1/5. (S8)

In the semi-dilute regime, the screening of excluded volume interactions along the backbones
is due to the presence of other macromolecules and leads to a random walk of the persistence
segments [9]. Therefore, the size of a bottlebrush scales with the number of backbone
monomers as

R1 ∝ R0g̃1(c/c1) ∝ N
1/2
bb , (S9)

where g̃1(x) is a scaling function. Together with Eqs. (6) and (S8), we obtain the size of a
bottlebrush in concentration regime 1, which reads

R1 ∝ (1 +Nscz)3/8N
1/2
bb c−1/8. (S10)

Note that for macromolecules with Nscz = 0, Eq. (S10) reproduces the expected power law

dependence for linear chains, Rlinear ∝ N
1/2
bb c−1/8 [9], which has been confirmed experimen-

tally [10] and by computer simulations [11, 12].
Upon further increase of concentration, c > c2, the persistence segments of neighboring

bottlebrushes start to overlap. The corresponding overlap concentration reads

c2 ∝
n0(1 +Nscz)

l0R2
sc,0

∝
(
Nsc

z

)−2/5
(1 +Nscz)−1/5, (S11)

where we have used Eqs. (4) and (5). In concentration regime 2, the self-avoiding walk
of monomers inside the cylinder turns into a random walk. Since the excluded volume
contribution of the side chains remains unaltered, one may anticipate that the persistence
length in this regime is given by

l2 ∝ n
1/2
2 (1 +Nscz)2/5. (S12)

A priori, we do not know how the number of backbone monomers inside the cylinder for
regime 2, n2, depends on Nsc and z. However, we may assume that n2 remains proportional
to z−1/2, see Eq. (4). Thus, in the limit Nscz � 1, Eq. (S12) suggests l2 ∝ z3/20. The latter
result allows us to perform a crossover scaling,

l2 ∝ l0g̃2(c/c2) ∝ z3/20, (S13)
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with g̃2(x) a scaling function. Together with Eq. (5) and Nscz � 1, Eq. (S13) leads to

l2 ∝ Rsc,2 ∝ N11/20
sc z3/20c−1/4, (S14)

where Rsc,2 denotes the size of side chains in regime 2. Within our theoretical picture,
both persistence length and size of side chains depend on concentration, but the number of
backbone monomers per cylindrical segment in a given concentration regime does not. Thus,
Eq. (S14) suggests a decreasing persistence (side chain) length with a constant number of
backbone monomers inside the persistence segment.

Equation (S14) can be re-written as l2 ∝ N3/20
sc z−1/4(Nscz)2/5c−1/4. Together with

Eq. (S12) and Nscz � 1, we obtain

n2 ∝

√
N

3/5
sc

z
, (S15)

which reflects a natural modification of Eq. (4). With Eqs. (S14) and (S15), we obtain the
macromolecular size of bottlebrushes in regime 2 (Nscz � 1),

R2 ∝ (1 +Nscz)2/5N
1/2
bb c−1/4. (S16)

Once the concentration is increased even further, c > c3, the macromolecules attain
melt concentration and side chains of neighboring macromolecules start to overlap. The
corresponding overlap concentration reads

c3 ∝
Nscz

l2R2
sc,2

∝ N−13/20sc z11/20, (S17)

where Eq. (S14) in the limit Nscz � 1 has been used. Due to the screening of excluded
volume interactions along the side chains of neighboring macromolecules, one expects that
the size of side chains, Rsc,3, and the corresponding persistence length, l3, in regime 3 scale
as Rsc,3 ∝ l3 ∝ N1/2

sc . With g̃3(x) a scaling function, the crossover scaling

l3 ∝ l0g̃3(c/c3) ∝ N1/2
sc (S18)

leads to
l3 ∝ Rsc,3 ∝ N1/2

sc z7/26c−4/13, (S19)

where we have used Eqs. (5) and (S17) in the limit Nscz � 1. In highly concentrated
solutions, the persistence length is proportional to the number of side chains within the
cylinder, i.e., l3 ∝ n3z. With Eq. (S19), the number of backbone monomers in the cylinder
then is

n3 ∝ N1/2
sc z−19/26. (S20)

The size of bottlebrushes in regime 3, R3, follows from a random walk of persistence segments
with length l3, where each segment contains n3 backbone monomers. This yields

R3 ∝ l3

(
Nbb

n3

)1/2

∝ N
1/2
bb N1/4

sc z33/52c−4/13. (S21)
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The above scaling result is very close to the one predicted by Borisov et al. [13] with respect
to all four exponents. However, the underlying assumptions for both models are different.
The scaling of bottlebrush size with Nbb and Nsc has been confirmed recently under melt
conditions [14].

With respect to suppressing entanglement effects in order to design super-elastic rub-
bers, highly grafted bottlebrushes are of particular interest. Here, an additional regime can
appear, where compression of the backbone and the side chains can lead to mutual screen-
ing of side chains that belong to the same macromolecule. With Eq. (S19), the overlap
concentration in regime 4 is

c4 ∝
Nscz

R3
sc,3

∝ N−1/2sc z7/26. (S22)

The crossover scaling reads
l4 ∝ l0g̃4(c/c4) ∝ N1/2

sc , (S23)

with g̃4(x) a scaling function. Using Eq. (5) in the limit Nscz � 1, one obtains the concen-
tration dependence of the persistence length in regime 4,

l4 ∝ N1/2
sc z27/130c−2/5. (S24)

Once more, we assume local stretching of the backbone, i.e., l4 ∝ n4z, where n4 denotes the
number of backbone monomers per persistent segment for regime 4. With Eq. (S24), this
leads to

R4 ∝ l4

(
Nbb

n4

)1/2

∝ N
1/2
bb N1/4

sc z157/260c−2/5, (S25)

for the size of bottlebrushes in regime 4. Together with Eq. (S22), the above equation can
be rewritten, such that we obtain Eq. (7) of the main text.

The summary of scaling analysis for different overlap concentrations and predictions for
the macromolecular size of bottlebrushes in the corresponding regime of concentrations are
listed below in Table S1.

x cx Eq. R2
x Eq.

0 – – N
6/5
bb (Nscz)4/5c0 (6)

1 N
−4/5
bb (Nscz)−1/5 (S8) Nbb(Nscz)3/4c−1/4 (S10)

2 N−3/5sc z1/5 (S11) Nbb(Nscz)4/5c−1/2 (S16)
3 N−13/20sc z11/20 (S17) NbbN

1/2
sc z33/26c−8/13 (S21)

4 N−1/2sc z7/26 (S22) NbbN
1/2
sc z157/130c−4/5 (S25)

TABLE S1: Summary of the theoretically predicted overlap concentrations, cx (x = 0, . . . , 4),

and the corresponding mean-square end-to-end distances, R2
x, of bottlebrush macromolecules as

functions of the degrees of polymerization of the backbone (Nbb) and the side chains (Nsc), grafting

density of the side chains (z), and concentration (c).
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