Supporting Information

An Efficient Supramolecular Adsorbent for Co-adsorption of Dyes and metal ions from wastewater and its application in self-healing material

Liwei Yan^{a*}, Mingqian Lv^a, Chunjiao Su^a, Leihao Zheng^a, Jialing Li^a and Zhongbin

 $Ye^{a,b}$

^a Department of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Road, Xindu, 610500, Chengdu, China. ^b State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, 8 Xindu Road, Xindu, Chengdu, China.

(*) Corresponding Author: Liwei Yan

E-mail: yanliwei@swpu.edu.cn

Fig. S1 The molecular structure of dyes

Fig. S2 The ESI-TOF MS spectra of 2-OA complexation at a 1:2 ratio. m/z found:

751.1119; calculated: 751.6928.

Fig. S3 The TEM image of **1**-OA in water on a carbon coated copper grid stained with phosphotungstic acid aqueous solution (10 g dm⁻³).^{S1}

Fig. S4 The length of the extended gelator molecule 1-OA was measured 2.1 nm in the crystal by MERCURY.^{S1}

Fig. S5 Stable opaque gel formed when adding few drops of water into a cyclohexane suspension of **2**-OA.

Fig. S6 2-OA gel without self-healing and moulding ability.

Fig. S7 The biphasic mixture of cyclohexane (top) and dye solutions (bottom), and the pictures of respective dye-adsorbed gels: (a) TiY; (b) CaD; (c) ErB; (d) BrG; (e) BaF; (f) CrV.

Fig. S8 The cyclohexane suspension of the mixture of gelator and dyes, (a) BrB, (b) MeB, (c) RhB, and (d) MeO, stable gels were formed upon addition of a few drops of water via heating-cooling methods.

Fig. S9 Adsorption isotherm curves of (a, c) Cu²⁺ and (b, d) Fe²⁺: (a, b) Freundlich model and (c, d) Temkin model.

Fig. S10 The desorption and re-adsorption of BrB under pH stimuli

Fig. S11 The schematic adsorption and desorption of gelator 2-OA for dyes.

Adsorption	D		
isotherm	Parameter	Cu ²⁺	Fe^{2+}
	$q_m(\exp)$	1105.4	238.3
Langmuir	q_m	1133.216	244.484
	K_{l}	3.119	0.766
	R^2	0.983	0.994
	R_L	0.0113-0.632	0.00969-0.661
Freundlich	K_2	590.960	85.373
	п	0.270	0.320
	R^2	0.879	0.889
Temkin	K_3	335.399	11.895
	В	122.061	42.083
	R^2	0.925	0.986

Table. S1 Adsorption isotherm parameters for the uptake of metal ions by 2-OA.

Reference:

(S1) L. Yan, S. Gou, Z. Ye, S. Zhang, L. Ma, *Chem. Commun.* 2014, 50, 12847-12850.