Supporting Information

Hybrid pectin-Fe³⁺/polyacrylamide double network hydrogel with excellent strength, high stiffness, superior toughness and notch-insensitivity

Rui Niu^a, Zhihui Qin^a, Feng Ji^a, Meng Xu^a, Xinlu Tian^a, Junjie Li^{*, b}, Fanglian Yao^{*, a, c}

a) School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. Email: yaofanglian@tju.edu.cn.

b) Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy

of Military Medical Science, Beijing 100850, China. Email: li41308@aliyun.com.

c) Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin, 300072, China.

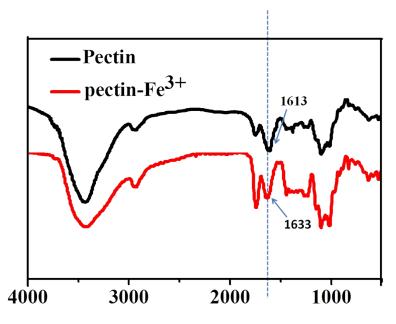


Fig. S1. FTIR spectra of pectin powder and pectin-Fe³⁺ hydrogel.

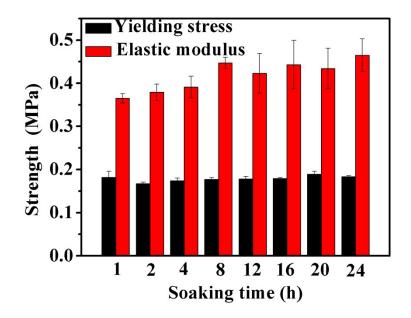
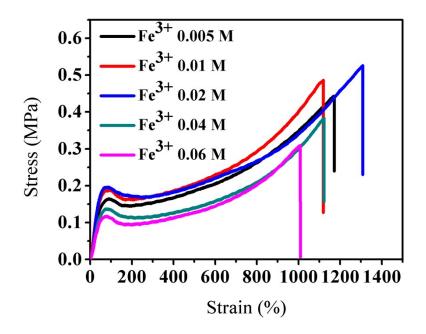
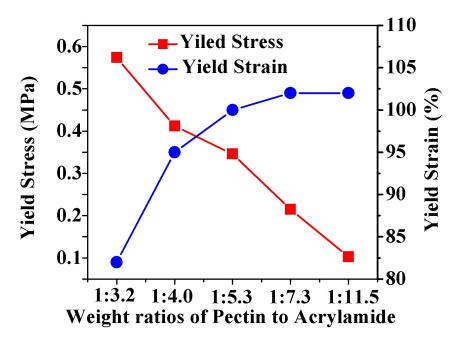




Fig. S2. Yielding stress and Elastic modulus of pectin-Fe³⁺/PAAm DN gels as a function of soaking time. The weight ratio of pectin to acrylamide is 1:7.3.

Fig. S3. Effect of Fe³⁺ concentration on the tensile properties of pectin-Fe³⁺/PAAm DN hydrogels. The weight ratio of pectin to acrylamide is 1:7.3.

Fig. S4. Effect of weight ratios of pectin to acrylamide on the yield stress and strain of pectin-Fe³⁺ /PAAm DN hydrogels.

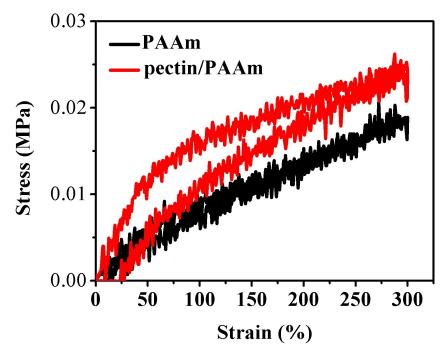


Fig. S5. The amplified loading-unloading curves of PAAm SN hydrogels and pectin/PAAm hydrogels in Fig. 7c