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Measurement of glass transition temperature of P4VP layer using 

ellipsometry

When the volume of polymer is measured during heating the polymer at constant heating rate, 

a point that volume begin to increase sharply can appear. This point can be regarded as the glass 

transition temperature (Tg), since the thermal expansion coefficient changes at Tg of polymer. 

Based on this principle, Tg of polymer can be determined and there have been a number of studies 

on the characterization of Tg. Since the Tg of thin polymer film is varied with the film thickness, 

Electronic Supplementary Material (ESI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2017



S2

we measured Tg of thin P4VP layer (thickness of 60 nm) using ellipsometry and the results are 

presented in Fig S1, in which Tg of 60 nm-thick P4VP layer is estimated as 148℃. This value is 

higher than Tg of P4VP in a bulk phase (142℃), because the affinity interaction between the P4VP 

and the Al layer is highly strong.

Fig. S1. Ellipsometric parameter (Ψ) measurement of thin P4VP film (60 nm) in a temperature 

range of 30  200℃

Mathematical expression for bending free energy of a single layer

When the system being deformed is regarded as an isotropic body, free energy of deformation 

can be given by:1
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where strain tensor ,  is shear modulus and  is bulk modulus. Especially, if .constu ikik    

the strain tensor is constant throughout the body (homogeneous deformation), then the free energy 
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expression for the deformation is described as:
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where E is elastic modulus, and  is poisson’s ratio. Now we consider the bending deformation 

of layer as shown in Fig. S2, here, the strain tensor term can be given by,
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where  is vertical displacement of a point on the neutral surface.

Then, the free energy of a single layer bending per unit volume is calculated from combining Eq. 

(2) and (3).
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Because Eq. (4) is free energy of the unit volume, the total free energy to describe the bending 

deformation of a single layer can be calculated by integrating Eq. (4) over the entire volume. 

Although the boundaries for x and y axes are unjustified (i.e. infinite surface), z axis is readily 

defined as the layer thickness. Therefore, Eq. (4) can be integrated over z from  0.5t to + 0.5t (t 

is the thickness of layer). As a result, the obtained form for the bending free energy is given by:
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where the displacement of is shown as sinusoidal function ( ). Finally, by combining  kxcos 
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equation (5) and (6), the bending free energy per area is derived.2
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Fig. S2.  Schematic illustration of bending deformation for a single layer

As illustrated in Fig S2, when bending deformation is upwardly occurred in a single layer, 

both compressive and tensile strains are applied to upper and lower sides of the layer, respectively, 

resulting in a generation of strain distribution along z-axis. The strain tensor term which is required 

for deriving the bending energy expression is determined by this strain distribution. Therefore, for 

heterogeneously multilayered systems, cumulative approach with considering individually divided 

layers can correctly reflect the strain distribution for each layer. On the other hand, if a 

homogeneous single layer is interpreted with cumulative approach, for which the homogeneous 

film is regarded as a stack of thin divided sub-layers, the sum of compressive strain at the upper 

side and tensile strain at the lower side is significantly falsely underestimated as compared to actual 

deformation. Therefore, to avoid this contradictory case in a model, a consideration for the 

individually divided sub-layers should be placed on heterogeneously multilayered films consisting 

of elastically highly distinguishable species.
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