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DYNAMICS OF MICROTUBULE DEPOLYMERIZATION

In Fig. S1, we provide calculations of microtubule (MT) size and dimer dissociation over time,

which complement the snapshots of behavior in Fig. 2 and the movies in Supplemental Material

(SM). Here, we focus on uncapped GDP-MTs, which are populated with compressed α-subunits,

undergoing catastrophic depolymerization or exhibiting stable leaves. Simulation protocols are as

described in the main text.

Fig. S1(a) demonstrates that during catastrophic depolymerization, unpeeling occurs at an

overall constant rate. This is established by calculating the net change ∆nrows(∆t) in number of

intact dimer rows over elapsed time ∆t. Rows are categorized as intact if all 13 dimer participants

(seam to seam) remain a part of the MT and of their subunits are bonded laterally. (The change

∆nrows(∆t) directly correlates with the change in MT length, as typified in the time-lapse snapshots

of main text Fig. 2(e-g).) On the other hand, for MTs exhibiting stable leaves, we initially observe

loss of intact rows (often at comparable rates to the depolymerizing cases), but ultimately the net

change in rows levels off as the leaves reach a quasi-equilibrium. As shown in Fig. S1(a), these

stable leaves can be quite long — up to 20 dimer rows or more in length — given very strong

vertical attractions (and lateral attractions strong enough to prevent mid-tubule instability).

Fig. S1(b) shows that GDP-MTs undergoing catastrophic depolymerization exhibit constant
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FIG. S1. MT sizes and dimer dissociation over time for uncapped GDP-MTs with attraction strengths

AL = 2.2kBT and various AV = 3.0, 3.2, and 3.4kBT (exhibit catastrophic depolymerization, i.e., catastrophe,

squares) and 4.4kBT (stable leaves, triangles). As in Fig. 2 in the main text, MTs are prebuilt with 40

dimer rows (520 dimers) with bottom two rows tethered. (a) Net change in number of intact dimer rows

∆nrows(∆t) over elapsed time ∆t. (b) Net change in the number of dimers ∆ndimers(∆t) due to dissociation

from the plus end. (c) Ratio of number of dimers released over the number of dimers that are unpeeled,

which can be calculated as f(∆t) = ∆ndimers(∆t)/(13∆nrows(∆t)). In (a-b), dashed lines denote complete

depolymerization.
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rates of net dimer losses (i.e., numbers of dimers released), as quantified by the net change in the

number of dimers ∆ndimers(∆t)— eventually hundreds of dimers are released from the propagating

ram’s horns (see main text Fig. 2). In contrast, GDP-MTs exhibiting stable leaves exhibit very

little dimer dissociation despite considerable unpeeling. Generally, we observe that any lost dimers

are usually released from one filament (not necessarily the seam). This apparently occurs because

systems prone to forming stable leaves tend to form evenly-sized leaves. Given 13 protofilaments,

this means four leaves that are three protofilaments wide, with the remaining filament left relatively

unstable and frequently “passed” back and forth between adjacent leaves (during which the terminal

dimer is weakly bound and likely to dissociate).

We combine the data from Figs. S1(a-b) to calculate the fraction f(∆t) of unpeeled dimers

that are actually released over time, shown in Fig. S1(c). Excepting initial startup, GDP-MTs

undergoing catastrophic depolymerization exhibit constant rates of net dimer losses roughly com-

mensurate with the rate of unpeeling, resulting in ratios close to 1.0 (though with smaller ratios

for higher AV, corresponding to longer leaves). For GDP-MTs with stable leaves, this ratio is

understandably low.

Finally, we note that for fixed lateral attraction strength AL, the rate of unpeeling negatively

correlates with vertical attraction strength AV. This corresponds with our observation that the

continued propagation of unpeeling directly coincides with (arguably, depends upon) the successful

dissociation of dimers, which in turn exposes new rows of dimers that can be unpeeled, etc. In

turn, the lower limit of unpeeling rate essentially corresponds with stable leaves at strong attraction

strengths, where the tendency of unpeel is ultimately frustrated by lack of dimer dissociation (at

long times, the unpeeling rate obviously approaches zero).

DISSOCIATION TIMES OF MICROTUBULE FRAGMENTS

As briefly discussed in the main text, we calculate the dissociation times of small GTP-MT

fragments built with uncompressed α-subunits (Fig. S2) to find the ranges in attraction strength

where GTP-MTs are highly stable. Here, fragment stability acts as a proxy for whole-MT stability

because GTP-MTs at attraction strengths of interest (e.g., overlapping the region where uncapped

GDP-MTs depolymerize) only slowly depolymerize from their plus ends, each starting with the

weakest-bound top dimer. This dimer is bound to only two neighboring dimers, one vertical and

one lateral, due to the pitch-3 architecture of the MTs (see Fig. 2) — hence the focus on 2x2 (LxV)

fragments where each dimer begins with this bonding motif. We choose the small fragments — as

opposed to, e.g., simulating short MTs — because we require many independent runs.

Fig. S2 shows the setup of a single simulation run, where we initialize a 2x2 fragment in isolation

and propagate its trajectory following the protocols in the main text. We do not fix the fragment

center-of-mass, allowing the fragment to translate in a cubic box with L = 30σ as it vibrates and

rotates. We run thousands of realizations at each combination of AL and AV and record when

the primary dissociation event occurs — i.e., the instant where the initial fragment breaks into

two or more non-bonded groups of dimers. For weaker attraction strength combinations, e.g.,

AL = 1.8kBT and AV = 2.0kBT , we perform upwards of 2x104 simulations runs out to timescales

of 5x103τ . For the strongest attraction strengths, e.g., AL = 2.2kBT and AV = 3.4kBT , we perform

upwards of 4x104 out to timescales of 2x105τ . Once we have collected individual dissociation times

at a given combination of AL and AV, we calculate the characteristic dissociation time td by

fitting the normalized histogram h(t) of dissociation times with h(t) = A exp(−t/td), where A is
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FIG. S2. Snapshots of a GTP-MT fragment simulation, one of many analyzed to obtain characteristic

dissociation times td for dimers. (a) Initial configuration: a 2x2 fragment of dimers bonded in perfect chiral

register. (b-e) Time-lapse of fragment dissociation (labeled by elapsed time ∆t), where we collect the time

corresponding to the primary dissociation event, i.e., the first instant where the initial fragment breaks into

two or more sets of dimers.
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FIG. S3. Diagram of dissociation times td for GTP-MT fragments as function of vertical (AV) and lateral

(AL) attraction strengths. Alternative axes show the maximum (absolute) bonding energies possible between

vertical (AV,S) or lateral (AL,S) subunit surfaces of two dimers. Solid symbols denote the combinations of

attractive strengths for which simulations were performed. Solid contour lines denote constant td values

interpolated from the simulation results; the dotted portion of the td = 20000τ contour is an extrapolation

from leftward simulated points at high AV.

an arbitrary constant.

Fig. S3 compiles the characteristic dissociation times td as a function of attraction strengths,

where by comparison with Fig. 3, we observe that GTP-MT fragment stability increases rapidly

within the parameter ranges where uncapped GDP-MTs exhibit catastrophic depolymerization,

stable leaves, or long-term stability. Note that these calculations provide a conservative proxy for

GTP-MT stability as the fragments lack the collective structural support of complete rings.
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FIG. S4. Snapshots from a simulation used to calculate free-energy landscape F for dissociation of exposed

dimers (i.e., dimers with only one lateral and one vertical neighbor, which occur because of MT pitch)

from short a GTP-MT. (a-d) Umbrella sampling is used to gradually move top (bottom) exposed dimer

from (a) the bound state where orientation is fixed due to neighboring wedges and attractive beads are in

perfect register to (d) distances away from the MT where the dimer experiences no attractive interactions

and has translational and orientational freedom. The umbrella sampling coordinate for each exposed dimer,

denoted ξ, is the root mean square deviation (RMSD) of its bead positions relative to its pocket position.

For each panel, we provide the reference ξ0 of the umbrella sampling window at the elapsed time ∆t of the

snapshot. All other dimers in the MT are tethered. (d-e) Alternative close-up views of the short MT just

after initialization.

BARRIERS TO DIMER DISSOCIATION FROM MICROTUBULE ENDS

To complement the above calculations of dissociation times, we also calculate approximate free-

energy profiles for dissociation of dimers from the ends of short GTP-MTs, which allows us to

estimate as a function of attraction strengths the free-energy barriers separating the bound and

bulk states. This provides a quantitative basis for our claim, also based on visual observations,

that whole GTP-MTs are stable across the parameter space where uncapped GDP-MTs exhibit

catastrophic depolymerization.

As shown in Fig. S4, we perform umbrella-sampling simulations of dimers initially in the bound

state (where they are bonded to two neighboring dimers, one lateral and one vertical) and then are

pulled away such that they have almost complete transitional and orientational freedom, excepting

occasional impacts with the tethered MT. In our setup, the short GTP-MTs (tethered in-place)

and the two dissociating dimers are simulated at overall packing fraction φ = 0.0085, which is

consistent with the whole-MT simulations and approximately corresponds to an average tubulin

concentration C = 30µM. The latter lies slightly above the concentrations typical in vitro and

under physiological conditions, which range from 0.1-10 µM [4].

The sampling coordinate is the root mean square deviation (RMSD), denoted ξ, of all bead

positions in the dimer relative to the average bead positions when in the bound state where ξ = 0

(i.e., oriented correctly at the tubule end and overlapping bonding sites with neighbors). This is a

reasonable choice of collective variable as it gradually increases the translational and orientational

freedom of the dimer as it leaves the binding site. We calculate profiles out to RMSD values where

the free-energies start to decrease as expected for dilute bulk conditions, with the dimer entropically

favored to translate away from the bound state and access larger volumes for a given RMSD (i.e.,

where p(RMSD) ∝ 4π(RMSD)2, with RMSD increasingly dominated by the average distance of
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FIG. S5. Free energies F as a function of dimer RMSD relative to the bound state, denoted ξ, for select

combinations of AL and AV. Profiles are normalized relative to their values at ξ = 5.0σ, which aligns the

regions of the profiles above ξ ≈ 4.0σ that approach the dilute bulk conditions away from the MT ends (see

text). The free energy barriers for dissociation ∆FMAX are the barrier maxima separating the bound states

and the large RMSD decay regions minus the bound state minimums. The bounds of ∆FMAX are shown

with arrows for the AL = 1.4kBT and AV = 4.0kBT case. Excepting the purely entropic reference case with

AL = 0.0kBT and AV = 0.0kBT , profiles for all systems considered have the same qualitative shape as the

profiles shown here, with one local maximum between the bound state and large-RMSD values.

the dimer beads from the bound state.) Note that our free-energy calculations resemble, but are

distinct from, some approaches [1–3] for calculating standard binding free energies ∆G◦
bind of, e.g.,

ligand-protein associations.

For each simulation (at a given combination of AV and AL), we use the COLVARS package for

LAMMPS [5, 6] to constrain the dimer in a series of overlapping RMSD windows. The biasing

potential of each window is harmonic and given by U(ξ) = (1/2)k(ξ−ξ2i ), where the spring constant

is k = 50.0kBT/σ
2 and ξi is the reference RMSD of window i. In each simulation, the first and

last windows have ξi = 0.0σ and ξi = 5.0σ, respectively, where the interval between windows is

∆ξi = 0.25σ. We move sequentially between windows (i.e., gradually increasing RMSD), using

the last configuration of a current window as the first for the new window and allowing the new

stage to relax for 5x104τ prior to collecting statistics. (This protocol ends up indistinguishable

from independently initializing each window.) We then collect 5x103 RMSD measurements over

2.0x104τ in simulation time.

From the simulation, we then measure the histograms ρi(ξ) of instantaneous RMSDs exhibit-

ing by the dimer in each umbrella-sampling window i and self-consistently combine them into

a single histogram ρ(ξ) spanning the entire range of RMSD values via the weighted histogram

analysis method (WHAM) [7]. During the re-weighting of our window histograms, we require

that window weights all converge within error tolerance 1x10−3. This single combined histogram

ρ(ξ) is then inverted to obtain the potential of mean force (PMF), i.e., free-energy landscape
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FIG. S6. Diagram of free-energy barrier ∆FMAX for dimer dissociation from the ends of GTP-MTs as

function of vertical (AV) and lateral (AL) attraction strengths. Alternative axes show the maximum (ab-

solute) bonding energies possible between vertical (AV,S) or lateral (AL,S) subunit surfaces of two dimers.

Solid lines trace free energy barriers ∆FMAX in increments of 2kBT . Simulations were performed at AL

increments of 0.2kBT and AV increments of 0.4kBT (not marked for visual clarity).

F (ξ) = −kBT ln{ρ(ξ)}+C where C is an arbitrary constant. Free-energy profiles for several com-

binations of attraction strengths are given in Fig. S5, which for attraction strengths greater than

zero all exhibit similar shapes.

As shown in Fig. S5, from each free-energy profile, we calculate the approximate free-energy

barrier to dissociation ∆FMAX relative to the bound state. These are compiled in Fig. S6, which

demonstrates that over the parameter ranges where uncapped GDP-MTs exhibit catastrophic

depolymerization, stable leaves, or long-term stability, the dissociation of exposed dimers from

GTP-MTs (or, e.g., GTP caps) is frustrated by free-energy barriers of at least 12kBT (see Fig. 3).

MECHANICAL PROPERTIES

We calculate the mechanical properties of GTP-MTs and capped GDP-MTs to contextualize

the model relative to real MTs, focusing on AL = 2.2kBT and AV = 3.2kBT as this combination

lies in the center of the catastrophic depolymerization region. We find that the model MTs in this

region are highly stiff, similar to recent calculations for tubules built from wedge monomers [9].

To obtain Young’s modulus E and shear modulus G we apply the methods of Sept and MacKin-

tosh [10] that were developed for equilibrium simulations of MT fragments. We perform simulations

of prebuilt MTs that are 40 dimer rows long (i.e., 320 nm) using the protocols in the main text.

Following Ref. [10], we extract the centers of mass of all dimer subunits for each simulation con-

figuration, and collect necessary statistics (described below) over each possible subset of 6 dimer

subunits. Each subset comprises 2x3 (LxV) adjacent subunits and we combine statistics from all

possible groupings in the tubules having subunits positioned at least 7 dimer rows away from the
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FIG. S7. Normalized probability distribution functions (pdfs) of equilibrium (a) interdimer vertical distance

d, (b) inter-filament vertical offset p, and (c) end deflection x. Symbols correspond to distributions measured

from GTP-MTs (blue squares) and capped GDP-MTs (gold circles) with 40 dimer rows and attraction

strengths AL = 2.2kBT and AV = 3.2kBT . Deflection distributions are averaged over the x- and y-directions

relative to tethered ends of the MTs (on average, MTs are directed along the z-axis; see main text Fig. 2).

Solid black lines are Gaussian fits to the data. In (b) and (c), results for the GDP-MTs are multiplied by a

factor of three for visual clarity.

MT ends. Thus, all fragment subunits are at least 5 dimer rows away from any tethered or capped

regions, and we capture only mid-tubule lattice properties. Note that the bottom subunits of a

fragment can be α- or β-subunits, or one of each if the fragment portion crosses the MT seam.

Each vertical half of a fragment spans the α (or β) subunit of a given dimer to the same subunit

in the dimer above it (i.e., one dimer length).

To obtain E, we begin by applying the equipartition relation

E(2D) =
1

2

d

w

kBT

〈∆d2〉
(1)

where E(2D) is the average local modulus of the 2D fragment, d is the average vertical dimer spacing,

w = 2.65σ is observed average filament width, and 〈∆d2〉 is the (Gaussian) variance associated with

average vertical dimer spacing d (see Fig. S7(a)). Given the approximation E = E(2D)h, where

h = 3σ is tubule thickness, we find that GTP- and GDP-MTs respectively have E = 158.4kBT/σ
3

and 77.1kBT/σ
3. In the main text, we convert these values to units of MPa given the conversions

kBT = 4.1pN-nm and σ ≈ 1.5nm (also used below).

We obtain G by beginning with the analogous relation

G(2D) =
2

3

w

d

kBT

〈∆p2〉
(2)

where 〈∆p2〉 is the variance in the vertical offset p between the vertical halves of the fragment

(adjacent protofilaments) (see Fig. S7(b)). Given the approximation G = G(2D)h, we find that

GTP- and GDP-MTs respectively have G = 26.0kBT/σ
3 and 21.3kBT/σ

3.

To measure persistence length `p, we mimic the equilibrium MT deflection experiments of

Pampaloni et. al. [11]. Here, we perform simulations of MTs that are 40 dimers long and follow

the protocols in the main text, except that we increase the Langevin damping constant to 1000τ−1

to lower the effective viscosity of the implicit solvent and improve sampling of whole-tubule motions.

The quantity of interest here is the (lateral) deflection x between the centers of mass of the top

7



10

15

20

25

0.4 0.5 0.6 0.7 0.8 0.9

θ
 (

d
e

g
)

rc (σ)

10

15

20

25

0.4 0.5 0.6 0.7 0.8 0.9

Mid-tubule break(s)

Catastrophe

Fraying

Stable

FIG. S8. Uncapped GDP-MT behavior as a function of compression (i.e., tilt) angle θ and attractive

bead cutoff distance rc (results in the main text are for θ = 15◦ and rc = 0.5σ. Attraction strengths

are fixed at AL = 2.2kBT and AV = 3.2kBT . GDP-MTs that are stable (diamonds) exhibit no unpeeling

or breakage over time. GDP-MTs exhibiting fraying (circles) frequently have broken lateral bonds in the

top dimer row, but never unpeel. GDP-MTs undergoing catastrophic depolymerization (i.e., catastrophe,

squares) unpeel from their uncapped ends and release dimers. At all other states, GDP-MTs exhibit one or

more spontaneous mid-tubule break(s) (plus signs). Note that similar behaviors are observed for attraction

strength combinations AL = 2.2kBT , AV = 3.0kBT and AL = 2.2kBT , AV = 3.4kBT .

and bottom rows of dimers (where the bottom is tethered), which are collected in Fig. S7(c). We

then apply the relation

`p =
L3

3〈∆x2〉
(3)

where 〈∆x2〉 is the (Gaussian) variance of the MT deflection x and L is the average tubule contour

length, which for GTP- and GDP-MTs is respectively L = 240σ and 234σ. In turn, we find that

GTP- and GDP-MTs respectively have `p = 3.54x105σ and 1.94x105σ.

EFFECTS OF ATTRACTION CUTOFF AND α-SUBUNIT TILT ANGLE

Finally, we briefly survey how the choices of compression (i.e., tilt) angle θ and attractive

bead cutoff distance rc impact the behavior of uncapped GDP-MTs. Here, we focus on attraction

strengths (AL = 2.2kBT and AL = 3.2kBT ) that fall squarely in the catastrophic depolymerization

region given the choices θ = 15◦ and rc = 0.5σ used in the main text. MTs are initially 40 dimer

rows long, and we follow the simulation protocols as described in the main text.

One notable finding is that for a given rc value, catastrophic depolymerization occurs over

a narrow range of θ-values — spanning only about 2◦ — which reflects the delicate balance of

geometric frustration required for inducing unpeeling only at an uncapped MT end (similar to the
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discussion of main text Fig. 3): too small of a θ value does not induce bond frustration sufficient to

destabilize the tubule, but too large of a θ value favors curved filament configurations very strongly,

producing many breaks over the MT lattice instead of a steadily propagating unpeeling only from

the plus end.

It is also apparent that for a given combination of attractions strengths, the choice of attractive

bead cutoff rc has no qualitative impact on the way GDP-MT behavior changes as a function of θ;

rather, increasing rc simply requires a corresponding increase in θ to induce the bond frustration

necessary for catastrophic depolymerization. For the attraction strengths here, one can observe

catastrophic depolymerization for a given rc by choosing θ = 25.0rc + 2.5. Of course, in the main

text we focus on the combination of θ = 15◦ and rc = 0.5σ, which demonstrates that α-subunit

compression can induce catastrophic depolymerization given attractive bead sizes comparable in

scale to tubulin binding structures and a θ-value comparable to that associated with the “bent”

tubulin conformation in experiments [12, 13]. However, the results here indicate that catastrophic

depolymerization can be predictably induced for other reasonable combinations of parameters.
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